The Community for Technology Leaders
2013 IEEE 54th Annual Symposium on Foundations of Computer Science (2000)
Redondo Beach, California
Nov. 12, 2000 to Nov. 14, 2000
ISSN: 0272-5428
ISBN: 0-7695-0850-2
pp: 180
J. Toran , Abteilung Theor. Inf., Ulm Univ., Germany
We show that the graph isomorphism problem is hard under logarithmic space many-one reductions for the complexity classes NL, PL (probabilistic logarithmic space), for every logarithmic space modular class Mod/sub k/L and for the class DET of problems NC/sup 1/ reducible to the determinant. These are the strongest existing hardness results for the graph isomorphism problem, and imply a randomized logarithmic space reduction from the perfect matching problem to graph isomorphism.
computational complexity; encoding; graph theory; hardness; graph isomorphism; logarithmic space many-one reductions; complexity classes; probabilistic logarithmic space; determinant; hardness results; randomized logarithmic space reduction; perfect matching
J. Toran, "On the hardness of graph isomorphism", 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, vol. 00, no. , pp. 180, 2000, doi:10.1109/SFCS.2000.892080
82 ms
(Ver 3.3 (11022016))