The Community for Technology Leaders
2013 IEEE 54th Annual Symposium on Foundations of Computer Science (2000)
Redondo Beach, California
Nov. 12, 2000 to Nov. 14, 2000
ISSN: 0272-5428
ISBN: 0-7695-0850-2
pp: 116
We investigate the approximability of no-wait shop scheduling problems under the makespan criterion. In a flow shop, all jobs pass through the machines in the same ordering. In the more general job shop, the routes of the jobs are job-dependent. We present a polynomial time approximation scheme (PTAS) for the no-wait flow shop problem on any fixed number of machines. Unless P=NP, this result cannot be extended to the job shop problem on a fixed number of machines: We show that the no-wait job shop problem is APX-hard on (i) two machines with at most five operations per job, and on (ii) three machines with at most three operations per job.
computational complexity; processor scheduling; polynomial approximation; approximability; in-approximability results; no-wait shop scheduling; makespan criterion; polynomial time approximation scheme; APX-hard
G.J. Woeginger, M. Sviridenko, "Approximability and in-approximability results for no-wait shop scheduling", 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, vol. 00, no. , pp. 116, 2000, doi:10.1109/SFCS.2000.892071
215 ms
(Ver 3.3 (11022016))