The Community for Technology Leaders
Proceedings of 37th Conference on Foundations of Computer Science (1996)
Burlington, VT
Oct. 14, 1996 to Oct. 16, 1996
ISBN: 0-8186-7594-2
pp: 550
M. Andrews , Lab. for Comput. Sci., MIT, Cambridge, MA, USA
M.A. Bender , Lab. for Comput. Sci., MIT, Cambridge, MA, USA
L. Zhang , Lab. for Comput. Sci., MIT, Cambridge, MA, USA
ABSTRACT
Processor speed and memory capacity are increasing several times faster than disk speed. This disparity suggests that disk I/O performance will become an important bottleneck. Methods are needed for using disks more efficiently. Past analysis of disk scheduling algorithms has largely been experimental and little attempt has been made to develop algorithms with provable performance guarantees. We consider the following disk scheduling problem. Given a set of requests on a computer disk and a convex reachability function which determines how fast the disk head travels between tracks, our goal is to schedule the disk head so that it services all the requests in the shortest time possible. We present a 3/2-approximation algorithm (with a constant additive term). For the special case in which the reachability function is linear we present an optimal polynomial-time solution. The disk scheduling problem is related to the special case of the asymmetric Traveling Salesman Problem with the triangle inequality (ATSP-/spl Delta/) in which all distances are either 0 or some constant /spl alpha/. We show how to find the optimal tour in polynomial time and describe how this gives another approximation algorithm for the disk scheduling problem. Finally we consider the on-line version of the problem in which uniformly-distributed requests arrive over time. We present an algorithm (related to the above ATSP-/spl Delta/) that appears to give higher throughput than previously existing head scheduling algorithms.
INDEX TERMS
scheduling; disk scheduling; disk I/O performance; convex reachability function; disk head; 3/2-approximation algorithm; asymmetric Traveling Salesman Problem; optimal tour; polynomial time; head scheduling
CITATION

L. Zhang, M. Bender and M. Andrews, "New algorithms for the disk scheduling problem," Proceedings of 37th Conference on Foundations of Computer Science(FOCS), Burlington, VT, 1996, pp. 550.
doi:10.1109/SFCS.1996.548514
86 ms
(Ver 3.3 (11022016))