The Community for Technology Leaders
Proceedings of 37th Conference on Foundations of Computer Science (1996)
Burlington, VT
Oct. 14, 1996 to Oct. 16, 1996
ISBN: 0-8186-7594-2
pp: 96-105
Daniel A. Spielman , Dept. of Math., MIT, Cambridge, MA, USA
ABSTRACT
Spectral partitioning methods use the Fiedler vector-the eigenvector of the second-smallest eigenvalue of the Laplacian matrix-to find a small separator of a graph. These methods are important components of many scientific numerical algorithms and have been demonstrated by experiment to work extremely well. In this paper, we show that spectral partitioning methods work well on bounded-degree planar graphs and finite element meshes-the classes of graphs to which they are usually applied. While active spectral bisection does not necessarily work, we prove that spectral partitioning techniques can be used to produce separators whose ratio of vertices removed to edges cut is O(/spl radic/n) for bounded-degree planar graphs and two-dimensional meshes and O(n/sup 1/d/) for well-shaped d-dimensional meshes. The heart of our analysis is an upper bound on the second-smallest eigenvalues of the Laplacian matrices of these graphs: we prove a bound of O(1/n) for bounded-degree planar graphs and O(1/n/sup 2/d/) for well-shaped d-dimensional meshes.
INDEX TERMS
finite element analysis,
CITATION

D. A. Spielman and Shang-Hua Teng, "Spectral partitioning works: planar graphs and finite element meshes," Proceedings of 37th Conference on Foundations of Computer Science(FOCS), Burlington, VT, , pp. 96-105.
doi:10.1109/SFCS.1996.548468
92 ms
(Ver 3.3 (11022016))