Subscribe

Santa Fe, NM, USA

Nov. 20, 1994 to Nov. 22, 1994

ISBN: 0-8186-6580-7

pp: 502-510

B. Gartner , Inst. fur Inf., Freie Univ. Berlin, Germany

ABSTRACT

We investigate the behavior of randomized simplex algorithms on special linear programs. For this, we develop combinatorial models for the Klee-Minty cubes (1972) and similar linear programs with exponential decreasing paths. The analysis of two most natural randomized pivot rules on the Klee-Minty cubes leads to (nearly) quadratic lower bounds for the complexity of linear programming with random pivots. Thus we disprove two bounds conjectured in the literature. At the same lime, we establish quadratic upper bounds for random pivots on the linear programs under investigation. This motivates the question whether some randomized pivot rules possibly have quadratic worst-case behavior on general linear programs.

INDEX TERMS

quadratic worst-case behavior, randomized simplex algorithms, Klee-Minty cubes, linear programs, combinatorial models, quadratic lower bounds, complexity, quadratic upper bounds

CITATION

B. Gartner,
G.M. Ziegler,
"Randomized simplex algorithms on Klee-Minty cubes",

*FOCS*, 1994, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science 1994, pp. 502-510, doi:10.1109/SFCS.1994.365741