2013 IEEE 54th Annual Symposium on Foundations of Computer Science (1991)

San Juan, Puerto Rico

Oct. 1, 1991 to Oct. 4, 1991

ISBN: 0-8186-2445-0

pp: 526-535

M. Herlihy , Digital Equipment Corp., Cambridge, MA, USA

ABSTRACT

The linearizable counting problem requires asynchronous concurrent processes to assign themselves successive values so that the order of the values assigned reflects the real-time order in which they were requested. It is shown that the problem can be solved without funneling all processes through a common memory location. Two new constructions for linearizable counting networks, data structures that solve the linearizable counting problem, are given. The first construction is nonblocking: some process takes a value after O(n) network gates have been traversed. The second construction is wait-free: it guarantees that each process takes a value after it traverses O(wn) gates, where w is a parameter affecting contention. It is shown that in any nonblocking or wait-free linearizable counting network, processes must traverse an average of Omega (n) gates, and so the constructions are close to optimal. A simpler and more efficient network is constructed by giving up the robustness requirements and allowing processes to wait for one another.

INDEX TERMS

network gates, nonblocking construction, wait free construction, asynchronous concurrent processes, real-time order, linearizable counting networks, data structures

CITATION

N. Shavit,
M. Herlihy,
O. Waarts,
"Low contention linearizable counting",

*2013 IEEE 54th Annual Symposium on Foundations of Computer Science*, vol. 00, no. , pp. 526-535, 1991, doi:10.1109/SFCS.1991.185415