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Abstract

‘We consider the computation of threshold functions
using formulas over the basis {AND, OR, NOT}.

We show that every monotone formula that com-
putes the threshold function T3, 2 < k < %, has size
Q(nklog(z27)).- The same lower bound is shown to
hold even in the stronger monotone contact networks
model.

We also show nearly optimal bounds on the size of
TIX formulas computing T} for small k.

1 Introduction

The threshold function T} is the Boolean function
on n inputs that takes the value 1 exactly when at
least k of the input variables have value 1. Threshold
functions play a central role in the investigation of the
computational complexity of Boolean functions (see
Boppana and Sipser (4], Wegener [22]). Their com-
plexity has been studied in various circuit models. In
this paper, we consider the computation of threshold
functions using formulas and contact networks.

Our main result is the following. We show that ev-
ery monotone formula computing Tf*, 2 < k < 3, has
size Q(knlog(z21)). The same lower bound is shown
to hold for of the stronger monotone contact networks
model. This result improves the earlier Q(nlogn)
lower bound due to Krichevskii [11} and Hansel [8],
and the Q(kn) lower bound due to Khrapchenko [10].

The complexity of computing T3, for large thresh-
olds, using constant depth circuits is well under-
stood [4]. However, for small values of k these results
do not imply superlinear lower bounds. Indeed, it has
been shown by Newman, Ragde, and Wigderson [14]
that for small values of k (bounded by a function of
the form (logn)" for some constant r), there do exist
linear size constant depth circuits computing T In
contrast, formulas even with unbounded depth need
size Q(nlogn) to compute Ty. To better understand
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the computation of T by constant depth formulas,
we consider ZIIZ formulas computing . A TIT
formula has the form \/f_, /\;'=1 ng 515 9 Where each
Sij is a subset of variables and their negations. Our
results are the following.

1. Suppose k < &. Then, every ZIIT formula com-
puting T has size exp(Q(vE))n.

2. Suppose k and n are large and k < 1/n. Then, ev-
ery LI formula computing T has size at least

exp(6(k))nlogn,

where §(k) = %‘ / ﬁ. This is an improvement of

the Q(knlog(%1)) lower bound due to Newman,
Ragde, and Wigderson [14].

3. Suppose k and n are large and k < y/n. Then,
there exist ZIIT formulas computing T} with size
at most

exp(2vkIn k)nlogn.

Note that the second result is stronger than the first
only for small values of %, when the logn factor be-
comes significant in comparison to the exp(v/k) factor.
In this paper we shall discuss the results 2 and 3 only;
a proof for result 1 is presented in [18].

1.1 Relation to previous work

Over the basis {AND, OR, NOT}, Paterson, Pip-
penger, and Zwick {15] show that T can be computed
using formulas of size O(n*%). The existence of poly-
nomial size monotone formulas for computing T8 is
implied by the O(logn) depth sorting network due to
Ajtai, Komlds, and Szemerédi [1). The existence of
more efficient monotone threshold formulas was shown
by Valiant [21] and Boppana [2]. Valiant showed that
the majority function (Tl':l /2J) can be computed us-
ing monotone formulas of size O(n®3). Boppana gen-
eralized Valiant’s result and showed that T can be



computed by monotone formulas of size O(k*>nlogn).
This is the best upper bound known for computing T}
using monotone formulas.

For the basis {AND, OR, NOT}, Khrapchenko {10]
showed that any formula computing T} has size
k(n — k + 1). Hansel [8] and Krichevskii [11] (see
also [14, 16]) showed that any formula computing T3
has size Q(nlogn). For the complete binary basis,
Pudlék [17] showed that any formula computing T,
2 < k <n-—1, hassize Q(nloglogn); Fischer, Meyer,
and Paterson [7] showed that the majority function
needs formula size (nlogn).

For monotone formulas, the only lower bounds
known were those implied by the results of Hansel,
Krichevskii, and Khrapchenko, stated above, which
hold even if the formula contains negations. Snir [20]
showed an (knlogn) lower bound for a problem aris-
ing in the context of hypergraph covering. This result
and its connection to TIIE threshold formulas are dis-
cussed below. However, it is not clear how Snir’s re-
sult may be used to derive our results for monotone
threshold formulas.

Related to the monotone formula model is the
model of the monotone contact networks. This
model is similar to the model of monotone nonde-
terministic branching programs. This model was
considered by Lupanov [12], who showed that any
monotone contact network computing T3 has size
Q(log n/loglogn). Krichevskii [11] improved this
lower bound to Q(nlogn). It follows from the results
of Moore and Shannon [13] that any monotone contact
network (even if constant 1 is allowed) that computes
T must have size k(n—k+1). Recently Razborov [19]
showed that any contact network (where negations are
allowed) that computes the majority function must
have size Q(nlogloglog” n).

A different approach to improving the known lower
bounds for formulas computing Tj* was chosen by
Newman, Ragde, and Wigderson [14]. They con-
gidered following the method used by Hansel and
Krichevskii for 7J. Hansel and Krichevskii obtained
their lower bounds in two stages. First, they showed
that any formula computing 73 may be converted to a
TIT formula without increasing the size. Next, they
showed that any ZIIT formula computing T3 has size
Q(nlogn). Since there exist formulas computing T3' of
size O(nlogn), this lower bound is the best possible.

To generalize the result of Hansel and Krichevskii,
Newman, Ragde, and Wigderson studied ZIIX formu-
las computing T for bigger values of k. They showed,
under the assumption that the fanin for the AND’s is
restricted to k, that any LIIE formula computing Tp,
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for 2 < k < n, has size at least nl‘?;":l:'-;-—‘;%%:—:}.

Under their assumption, the problem is equivalent
to the problem of covering the complete k-uniform hy-
pergraph using k-partite hypergraphs. In this setting,
the problem was studied earlier by Snir [20] who ob-
tained identical lower bounds. Using a random fam-
ily of k-partite hypergraphs one may obtain LT for-
mulas of size O(vk exp(k)nlogn). It was shown by
Radhakrishnan [18] that the results of Snir can be im-
proved using the technique of Kérner {9), and Fredman
and Komlés [6]. This implies that any LI formula
computing T, with the restriction that the fanin for

the AND’s be k, has size Q(%%E)-n logn). Thus there
exist essentially tight bounds on the size of restricted

$IOY formulas computing T .
1.2 Overview

In this paper, we use an information theoretic in-
equality due to Fredman and Komlés to improve the
known lower bounds for formulas computing T3'. In
section 4, we present our results for monotone thresh-
old formulas. In section 5, we present the resulis on
ST formulas. For our lower bound, we do not im-
pose any restrictions on the TIX formulas, that is, the
fanin of the AND’s need not be k and the formula may
contain negations. We also show that TIIT threshold
formulas exist whose size is close to the lower bound.
These formulas do not use negations.

2 Notation

In the following [n] will denote the set {1,2,...,n}
for a set S, (i) will denote the set of all k size subsets
of S.

For a function f on n variables, we shall assume
that the variables are z1,Z2,...,ZTn. We say that f
accepts T C [n] if f evaluates to 1 when all the vari-
ables z;.4 € T are given the value 1 and the remaining
variables are given the value 0. We often identify a set
of variables with the set of indices of those variables.
A function f is said to be l-immaune if it accepts no
T C [n] with |T| < I. Thus, the threshold function T3
is (k — 1)-immune.

We shall use the standard notation from graph the-
ory. The graphs we consider will usually be undirected
and simple. The size of the largest independent set
in a graph G will be denoted by a(G); size(G) will
denote the number of non-isolated vertices in G. A
function f with domain V(G) will be called a coloring
of G if f(i) # f(j) whenever (i,5) € E(G). For a



graph G, GV will denote the subgraph induced by the
non-isolated vertices of G.

We shall think of a monotone formula as a rooted
binary tree where each internal vertex is either an
AND or an OR, and each leaf is a variable.

Definition 2.1 A monotone contact network is a di-
rected graph G = (V, F) that has two distinguished
vertices s (source) and t (sink). (Multiple edges
are permitted to exist in the graph.) The non-
distinguished vertices will be called internal vertices.
Each edge in the network has a label from the set
{z1,22,...,2Zn}. A monotone contact network N com-
putes a function fx from {0,1}" to {0, 1} as follows.
Given an input y in {0, 1}" each edge of N is set to 0 or
1 according to the value of its label. Then, fn(y) =1
if there is a path from s to ¢ using only edges with
value 1, and fn(y) = 0 otherwise. The size of a con-
tact network is the total number of edges in it.

Definition 2.2 A depth two contact network is a con-
tact network where each edge is incident on s or .
Further, s has no edge coming in and ¢ has no edge
going out.

We shall say that a contact network accepts a set A
if the function it computes accepts A. We shall extend
this terminology to apply to the vertices of a contact
network. For example, we shall say that a vertex p
of the contact network N accepts a set A if there is
a path of all 1’s from p to ¢ on input A. Thus, the
contact network accepts precisely those inputs that
are accepted by the distinguished vertex s. A vertex
is said to be r-immune if it does not accept any input
of size less than or equal to r. For example, if a contact
network computes T}*, then the distinguished vertex s
is (k — 1)-immune.

A TOT formula has the form \/i_, ;‘=1 Vies,; @
where each S;; is a subset of variables and their nega-
tions. The size of a formula f, denoted by size(f), is
the number of occurrences of variables in it. Thus if
f is the ZIIT formula shown above, then size(f) =

f=1 ;"=1 [Si1-

A TIZ formula has the form /\;-=1 Vges; g Here S;
is a subset of variables and their negations.

Let F be a formula on n variables and let T C [n}.
We use F|r to denote the formula obtained from F
by fixing the variables appearing in T' at 1. We shall,
however, continue to think of F|r as a formula on n
variables (only some of the variables do not appear
explicitly in its representation).
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3 Information theoretic inequalities

For a random variable X, let support(X) denote the
set of values that X assumes. We shall need the fol-
lowing standard definitions from information theory.

Given a random variable X with finite support, its
entropy is given by

D

resupport(X)

HX) =~ Pr[X = z]logPr[X = z].

If X and Y are random variables then (X,Y) will be
the random variable taking values in support(X) x
support(Y) according to the joint distribution of X
and Y. For notational convenience we denote the en-
tropy of this random variable by H(X,Y) instead of
H((X,Y)). The entropy of a function f will be the en-
tropy of the random variable f(X), where X assumes
values in the domain of f with uniform distribution.

If X and Y are random variables, then the condi-
tional entropy of Y given X, denoted by H(Y'|X), is
given by

H(Y|X)= H(X,Y) - H(X).

For random variables X and Y with some joint dis-
tribution and = € support(X), let Y, be a random
variable such that

PrlY; = y] = Pr[Y = y|X = z].
Then, it can be shown that

H(Y|X) = E(H(Yx)). (1)

The following information theoretic measure on
graphs was introduced by Fredman and Komlés [6].
This notion of graph entropy is different from the
more sophisticated notion of graph entropy due to
Kérner [9].

Definition 3.1 (Coloring Entropy)

Let G = (V,E) be a graph. Let f be the coloring
of the graph G with minimum entropy. The coloring
entropy of G is given by

H(G) — size(G)
)= 1o

(If E(G) is empty, then H(G) = 0.)

H(f).

In the rest of this paper, when we say entropy of a
graph G we shall mean the coloring entropy of G. The
following lemma is due to Fredman and Komlés [6].
It is a special case of the subadditivity property of
Kdrner’s entropy [9]. The proof given here is a gener-
alization of the one due to Pippenger [16].



Lemma 3.2 Let G,Gh,...,Gi be graphs with vertex
set [n] such that G =G, U G2U...UG). Then

1
n

:2_; H(G:) 2 log(5r)-
Proof: Let X be a random variable taking values in
V(G) with uniform distribution. Then H (X) =logn.

Fori=1,...,1,let f; be a coloring of the subgraph
G¥, with minimum entropy, as in the definition of
H(G;). Fori=1,...,1,let Y; be the random variable
taking values in the range of f;, defined by

_ 0!
size(G;)’
The random variables Y3,Y3,...,Y; are independent

of each other and of X.
For i = 1,...,1, let the random variable X; be de-
f(X)

fined by
{4

Note that H(Y;) = H(X:) = H(f;). Further, ob-
serve that for each value of X the random variables
X1, X3, ..., X are independent. Now,
H(X1,Xs,..., X1) — H(X1,. .., X1)|X)

= H(X) - H(X|(X1, X3,...,X1)). 2)
Since G = Ul_,Gi, for any value of (X1,Xz,.. - X1),
the random variable X can take at most a(G) different
values. It follows that

H(Xl(Xl, Xz, .o .,Xl)) S loga(G)

PrlY; = j]

if X is non-isolated in Gj;
otherwise.

X;

Since X3, Xa, ..., X are independent for each value of
X, we have from (1) that

t
H((X1, Xz, ..., X)|X) = > H(Xi|X).
i=1
Noting that H(X1, X2,...,X1) < Yo, H(X:), we
get from (2)

H
;(mx.-) — H(X:|X)) > 1og(;(%))-

Size(G")H(X.-).

From (1), we have H(X;|X) = (1 - &)

1t follows that

1
Z; H(G:) > 1og(—"G—))-

«

This completes the proof of the lemma. o
Since a bipartite graph has a coloring with entropy
at most 1, we get the following corollary to lemma 3.2.
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Corollary 3.8 Let G1,Gs,...,Gibe bipartite graphs
with vertex set [n]. If G = G1UG2U...UGi, then

1
3 size(Gi) > nlog(az’;,—)). o

i=1

We shall need:the following two results. Let L(z) =
log((z+1)e). The following lemma is from Csisz4r and
Korner [5).

Lemma 3.4 For a random variable X concentrated
on non-negative integers

H(X) < L(E(X)). D

The following lemma is due to Boppana [3]

Lemma 3.5 Every graph G with n vertices and m
edges has a coloring with entropy at most L(%). O

4 Monotone formulas

In this section we shall extend the results of
Krichevskii and Khrapchenko and show improved
lower bounds on the size of monotone formulas com-
puting T?. Let Lp(Ty) be the minimum size of a
monotone formula computing T{*. It is easy to see
that Lpr(T8) = Lar(Tn—k+1). The case k =1 is triv-
ial. We shall consider the case when 2 <k < 2.

Note that a monotone formula can be converted to
a monotone contact network of the same size by repre-
senting the OR’s in parallel and the AND’s in series.
Hence, to show lower bounds on the size of mono-
tone formulas computing Ty, it suffices to show lower
bounds on the size of contact networks computing T},

The following lemma is implicit in the work of
Krichevskii [11].

Lemma 4.1 Every l-immune monotone contact net-
work JY can be converted to a depth two contact net-
work N such that

1. N is 1-immune.
2. Size of N is at most the size of N.
3. Every input accepted by N is accepted by N.

Proof: We first convert N to a contact network N’
that accepts exactly the same set of inputs as N and
has size at most the size of N. Then we convert N’ to
a depth two contact network N.

Let V; be the set of vertices in N that are reach-
able from s using only those edges that have label ;.



Delete all edges incident on vertices in V; with label
z3. Add new edges connecting s to each vertex in V3.
Label the new edges with label z;.

We repeat this procedure for the other labels
Z3,...,Tq. The final network thus obtained is N’. At
each stage the new network accepts exactly the same
set of inputs as the old network. In particular, N’ is
l-immune. Moreover, the number of new edges added
is at most the number of edges deleted.

The network N’ has the following property. If a
vertex v has an edge from s with label z; then no edge
leaving v has label z;. Let v be an internal vertex of
N'. Let A, be the set of labels on the edges (s,v) and
B, be the labels on the edges (v, w) leaving v. Then
A, and B, are disjoint sets. Further, the size of N’ is
at least 3, |Ao| + | Byl

The network N is constructed as follows. The set
of vertices for IV is the same as the set of vertices for
N'. For each internal vertex v add |A,| edges of the
form (s,v), one for each label in A,. Similarly, add
|B,| edges of the form (v,t) one for each label in B,.

Clearly, the size of N is at most the size of N'.
Since A, is disjoint from B,, N is l-immune. It only
remains to verify that I accepts all the inputs that
N' accepts. Let y be accepted by N’. Thus on input
y we obtain a path of all 1’s from s to . Since N’
is l1-immune, this path must have length at least 2.
Let vy be the second vertex on this path. Then, the
edge (s,v;) and an edge going out of v; are set to 1
on input y. Thus, there is a path generated from s to
t via vy in N. Hence, N accepts y. o

Lemma 4.2 Let N be a 1-immune monotone contact
network that accepts all the sets of size k. Then the
size of N is at least nlog(;27).

Proof: By lemma 4.1 we may assume that N is a
depth two contact network. For each internal vertex
v of N, let A, be the set of labels that appear on
the edges of the form (s,v) and B, be the set of la-
bels that appear on the edges of the form (v,t). Let
G, be the undirected bipartite graph with vertex set
{#1,...,Za} and edge set E(G,) = A, x B,. Note that
size of N is at least ), size(G,). Let Gy = |, Go.
Since N accepts all the sets of size k we have that
Gn has no independent set of size k. By lemma 3.3
we have that }° size(G,) > nlog(z2;). The lemma
follows from this. (=]

Lemma 4.3 Let & > 2 and let N be a monotone
contact network computing T}?. Then

size(N) > l-lziJnlog(k—f_L—l—).
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Proof: We shall use induction on d to show that the
following assertion holds for all positive integers d.

If N i3 a (2d — 1)-immune monotone contact net-
work that accepts all sets of size k, then size(N) >
dnlog(:%y)-

The basis case, when d = 1, is lemma 4.2 above.
Assume that the assertion is true with d = r, for some
positive integer'r. We shall show that the assertion
holds for d = r + 1.

Suppose that N is a (2(r + 1) — 1)-immune contact
network that accepts all sets of size k. Let V' be the
set of vertices that accept some input of size at most
two. Note that ¢ is in V' and s is not in V’. Let
V2 be those vertices in V' that are l-immune. Let
N=v-".

Let M, be the network obtained from N by deleting
all the vertices outside V' and the edges incident on
them. The source of M, is obtained by collapsing all
the vertices in V3 to a single node. The sink of M;
will be ¢. Let N; be the network obtained from N by
collapsing all the vertices in V' to form the sink. The
source of Ny will be s. Note that size(N) > size(M;)+
size(Ny).

Clearly, M; is 1-immune. Since N is (2(r+1)—1)-
immune and all vertices in V' accept some set of size
at most 2, Ny is (2r —1)-immune. Also, N; accepts all
sets of size k. We may thus apply the assertion with
d = r to N; and obtain

n

size(Ny) > rn log(k — 1). 3)

Next we show that M; accepts all the inputs that
N accepts. Let y be an input accepted by N. Then,
there is a path in N from s to ¢t with all labels set to
1 by y. Let v be the last vertex on this path that is
l-immune. (Note that s is 1-immune, hence there is
at least one such node.) All the vertices after v are
not l-immune, hence those vertices are all in V3. We
claim that v € V5. Since the successor of v on the path
is in Vj, v accepts a set of size at most two. Thus v
is a 1-immune vertex in V. It follows that v is in V5.
Thus y creates an all 1°’s path from a vertex in V5 to
t all of whose edges are contained in M;. Thus M,
accepts all the sets that N accepts. It follows that M;
accepts all sets of size k. By lemnma 4.2 we have

size( M) > nlog(kf 1). (4)

Combining (3) and (4) we get

n

size(N) > size(M;) + size(N;) > (r + l)nlog(k — 1).

This completes the induction step.



We may now complete the proof the lemma by tak-
ing d = | %] in the above assertion. o

Corollary 4.4 Every monotone formula computing
Ty, for 2 < k < 3, has size Q(knlog(327))- o

5 YIOX formulas

In this section we present the results on LI for-
mulas computing T*. As explained in the introduc-
tion, our lower bound results are interesting only for
small values of k. For the lower bound results we
shall assume that n and k are large numbers and
k < (loglogn)?.

5.1 Preliminaries
Definition 5.1 (Fredman-Komlés graph) Let f

be a formula on n variables. For k > 2, the graph
G(f,k) is defined by

vers) = (©@a:ce (M)
and 2 € n] - C;
EG(fE) = {(G2),Dy): C=D

and f accepts C U {z,y}}.

In the special case of k = 2, we may think of G(f, k)
as a graph with vertex set [n] where (%, j) is an edge if
and only if {,j} is accepted by f. In our discussion,
the parameter k, in the above definition, will often be
clear from the context. For notational convenience,
we write G(f) instead of G(f, k), in that case.

Let Fy be a formula computing T3*. Then G(Fo)
consists of (,",) components, where each component
is a complete graph on n — k + 2 vertices. We shall
denote this graph by C(k). Let G be a subgraph C(k)
with V(G) = V(C(k)). The subgraph of G induced
by the vertices (C, z), with the same value for C will
be called a block of G(f). We shall denote this block
by G¢. Thus, there are (kfz) blocks, one for each
C € ().

Let H(G) be the sum of the entropies of all the
blocks of G. For example, if G = C(k), then each
block is a complete graph with n — k + 2 vertices.
Thus, each block has entropy log(n — k + 2). There-
fore, H(C(k)) = (,",)log(n — k + 2). Since L(z) is
a concave function we get the following corollary to
lemma 3.5.
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Corollary 5.2 If G is a subgraph of C(k) with
V(G) = V(C(k)), then

: n \ [ EG)
#@< (o) e °

We call a IIT formula f k-optimal if f is (k — 1)-
immune and no:(k —1)-immune IIT formula g satisfies
size(g) < size(f) and G(f, k) is a subgraph of G(g, k).

Lemma 5.3 Let £ > 2 and let f = A;:quESj q be
a k-optimal formula. Then, no S; has more than k—1
negated variables.

Proof: Suppose the lemma does not hold. Say Sj,
has at least k negated variables. Consider the formula
g obtained by omitting Sj,. Clearly G(f,&) is a sub-
graph of G(g, k). Also size(g) < size(f). Further if g
accepts T C [n], |T| < k then so would f, for Vyes, ¢
evaluates to 1 on any such 7T'. Since f is k-optimal, f
is (k — 1)-immune and hence does not accept any such
T. Hence g does not accept such a T and is (k — 1)-
immune. This contradicts the optimality of f and the
proof is complete. (u}

Lemma 5.4 Let f = A\ 1 Vges; 2 be a 1-optimal

formula. Then no two Sj have the same negated vari-
able.

Proof: By the optimality of f we may assume that
no §; has both a variable and its negation. Assume
that the lemma does not hold. Let S; and S; have
the same negated variable, say Z1. By the previous
lernma they have no other negated variable. Let g be
the formula obtained from f by omitting S;. As before
G(f,2) is a subgraph of G(g,2) and size(g) < size(f).
We claim that ¢ is 1-immune. For, if g accepts T and
1 ¢ T then f accepts T. Also, g does not accept {1}
for Vees , 4 evaluates to 0 on {1}. Thus if g accepts
T and |T'| < 2 then so does f. Since f is l-immune, g
is 1-immune. This contradicts the optimality of f and

we have established the lemma. o
5.2 IIY formulas
Consider the p) 19> formula

F =V, /\;'___1 Vges.; 9- Suppose that F computes
T3. Then G(F) consists of (,_.':2) disjoint complete
graphs of size n — k + 2. Let A = A;2; Vges,; 0
Note that G(F) is the union of the graphs G(4;),
i = 1,...,p. Roughly speaking, we shall show that
if the size of A; is small, then H(G(4;)) is also small.
Notice that since the union of the G(4;) is C(k), we
have that Y°2_, H(G(4:)) > (") log(n — k + 2).



To relate size(4;) to H(G(Ai)), we need two re-
sults. The combinatorial result, lemma 5.6, states,
roughly speaking, that if size(4;) is small then only a
small number of blocks are nonempty in G(4;). Due
to technical difficulties, introduced by the presence of
negated variables, we actually show that if some edges
are deleted from G(A4;) then most of the blocks are
empty. The edges deleted from the different G(4;)
put together are so few that they do not contribute
significantly to the entropy of the final graph. The
proof of this result is long and technical. We shall not
include it in this paper. The detailed proof may be
found in [18].

However, this result, in itself, is not sufficient to
complete the proof of the lower bound. Even if the
number of nonempty blocks is small, each such block
may be very dense and could still have entropy which,
for our purposes, is not sufficiently small. To bound
the entropy of a block, we observe that the edges con-
tained in a block correspond to the edges accepted by a
certain 1-immune IIE formula. For example, the edges
contained in the block corresponding to D € (k ) are
in direct correspondence with the edges of G(4; [ Dy 2).
Note that G(4;|p,2) has only one block and hence
H(G(Ailp,2)) = H(G(Ai|p,2)). The second result
(lemma 5.5) relates the size of a 1-immune IS for-
mula with the entropy of its graph.

We now present the proof of the lower bound in
detail.

Lemma 5.5 Let A = /\] =1 Vyes; ¢ be a 1-immune
IIY formula on n variables. Then

sme(A)

H(G(A,2)) < 20(Z224)y,

Proof: We may assume that A is l-optimal. By
lemma 5.3 an S; may have at most one negated vari-
able. Since 4 does not accept the empty set not all S;
have a negated variable. By lemma 5.4 no two S; have
the same negated variable. Let Sy, S,,..., Sy not have
any negated variable. Further, let the negated variable
inSpyjbezjforl<j<t—t.

Let Gy be the subgraph of G(4,2) with vertex set
[n] and consisting of all edges that have at least one
end in {1,2,...,t —¢'}. Let G2 be the graph with ver-
tex set [n] consisting of the remaining edges of G(4, 2).

Now, for 1 < j <t—t'if (i,5) € E(G(A 2)) then
z; € Sgl.H It follows that IE(Gl)l < E i=1 (lst'+1| -
1) < size(A4). By lemma 3.5, we have that there i is a
swe(A))

[t '] be defined

coloring of G with entropy at most L(
Next we consider G5. Let x : [n] —
as follows.

x(9) 1 for1<j<t—t}
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min{r : S, does not contain z;}
fort—t' <j<n.

x(J)

Since A is 1-immune, every variable z; not appearing
in the negated form in A satisfies z; ¢ S, for some
r, 1 < r < t'. Thus, x is well defined. We claim
that x is a coloring of Ga. For let (iy,i2) € E(G,).
Since vertices I,...,t —t' are isolated in G3, ¢t — ¢ <
11,42 < n. Suppose x colors both i; and i, by the
same color, say 7. Then qu s, 4 evaluates to 0 on
{41,42} and hence (i1,4;) is not an edge of G(4,2)
and therefore not an edge in G;. This contradicts
our assumption. Hence ) is a coloring of G,. By
our definition }°°_, (x(5) — 1) < s1ze(A) Thus if the
random variable X takes values in [n] with uniform
distribution then E(x(X) —1) < M It follows
from lemma 3.4 that

sme(A) )

H(G2) < H(x(X)) < H(x(X) - 1) < L(——

Since both G; and G have colorings with entropy
at most L( w), we have that their union has a
coloring with entropy at most 2L( —z—i&l). o
The following lemma is the combinatorial result dis-
cussed earlier.
Lemma 5.6 Let 4 = /\;:: Vges; be a (k- 1)
Let T = {y e (&)
A accepts v}. Let a(k) = &5

immune II¥ formula.
K
mE:
(a) Suppose size(4) < 5 Let

¥Y={ae (k[ ]2) :3z,yauU{z,y} €T}

Then |¥| < (§izi_m)_) e—o(k)(k’_lz)'

(b) Suppose size(4) > - Then there exists a set

ACT,|A|<n3(}) such that if
¥={a:3z,yau{z,y} €T - A},

then |¥| < (&Zﬁlﬂ) e_a(k)(l.:z)‘ o

This result states that if we remove (2)n s (k) edges

from G(A, k), then the number of nonempty blocks is
small.

Lemma 5.7 Let A be a (k — 1)-immune IIT formula
on n variables. Let G’ be a subgraph of G(4, k) with

at most (“lze“))e“‘”‘)( _2) nonempty blocks.



(a) If size(4) < ng“‘"‘ ), then
B(G) < () SAle—e®ar(F5).
(b) If  size(4) > neo(®), then

B(@) < (2)2LGERD):

Proof: We think of G' as consisting of (k':z) disjoint

blocks G%, one for each D € (k[':]z) Observe that G
is a subgraph of G(4|p,2). (Here we think of A|p as
a formula on n — k + 2 variables). Since 4 is (k —1)-
immune A|p is 1-immune. By lemma 5.5,

size(A4|p)
n—-k+2

size(A)

n—-k+2)'

H(Gp) <2I(

) < 2(

This gives us an upper bound on the entropy of
any nonempty block. Since the number of nonempty
blocks in G' is at most SlZi(A e=*®)(.",), we can con-
clude

ae<(,”,

size(4) _o(x) size(A)
) n 2L n—k+2 )-

Since the number of nonempty blocks is at most (L'_'_ 2)
we always have that

size(A)

A6 < (kf 2)2L(m )

5.3 The lower bound

We are now ready to prove the main result of this
section.

Theorem 5.8 If F = \/2_; Aj%; Ves,, ¢ is a TOZ
formula computing 7} then

size(F) > exp(6(k))nlogn,

where §(k) = 316\/#'

Proof: Let 4; = /\;'=1 Ves;; 9> let a(k) be as in
lemma 5.6. Let

I, = {i:size(4;) < -12-11},
L = {i: % < size(4;) < ne®®)};
Is = {i:size(4;) > ne®®}.

For i € I, we may, by lemma 5.6, write G(4i) =
G1(4i, k) U Ga( 4, k), where G1(Ai, k) has at most
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812€(4) p-a(k)(," ) nonempty blocks and Ga(4i,k)
has at most (’é)n“%(',:) edges. Now,

arF =6 = |JGM)v G4k

iely $€ly

U G:(4i, kyu | 6(4).

i€z 210

Let G' = Ua’EIg G2(Ai, k). Then,

186" < ()t (3):

Since all the blocks of C(k) are complete graphs
with n — k + 2 vertices, we get, using lemma 3.2, that

Y EGA) + Y B(Gi(4i k) + B(G)

i€l i€l
+§ H(G(A)) > (k C 2) log(n — k +2).

By corollary 5.2, lemma 5.7 and lemma 5.6 we have
that

Z size"(LA.-)e_a(khL( size(4;) )+L(|E(G')|)

iehul, n—k+2 v
size(A;)
+22L(n_k+2) > log(n — k +2).

s€ls

The lemma follows from the last inequality. We omit
the details. (u]

5.4 The upper bound

In this section we show that there exist ZIIE for-
mulas for computing T, for n and k large enough and
k < /n, of size at most

Vg logn.
For simplicity, assume that k% is an integer. We con-
struct the formulas in two stages. In the first stage we
construct IIZ formulas. These formulas are (k — 1)-
immune and they accept a large proportion of all in-
puts that a formula computing T}* must accept. In the
next stage, we take the disjunction of random copies

of this formula and obtain a TIIT formula computing
>

Lemma 5.9 There exists a IIZ formula computing
TV of size at most

(l’_zl)(zz_zu).



Proof: Let
F =

A Vi

2 i€ES
Se(a’lillﬂ) i€
It is easy to verify that F' computes T¢. Also,

12

_1)(12_z+1). o

size(F) = (l

Lemma 5.10 There exists a (k — 1)-immune IIE for-
mula G such that size(G) < (},;)n and G accepts at

vE
least (#) (2) sets of size k.

Proof: Let I = vE. Let Dy, D,,...,D; be a parti-
tion of [n] into ! equal parts. For each i = 1,...,l,
let D}, DZ,...,D¥ be a partition of D; into 1% equal
parts. Thus |Di| = 3

Let F; be the formula obtained from the formula F
in lemma 5.9 by replacing the variable z; by \/ geDi Tg-

That is,
/\ V V Lq

B3 y JES gepI
SE(I’—H»I.) 9€D;

F;

Let G = /‘\:.:1 F;. Note that G is a IIT formula and it
is (k — 1)-immune. We have

? 5
size(F;) = (1_1)(1-_1+1)133;
2 _ 2
size(G) = l——lii(lil)n

IA

12
( , ) n.
The number of sets of size k accepted by G is given
by

i
H(the number of sets of size l accepted by F;)

i=1
(O] =)

Since I2 = &, the lemma follows from this. D

Theorem 5.11 There exists a TIIT formula of size
at most ez‘/’?h‘knlogn computing T}

Proof: Let r be a parameter to be chosen later. We
take r independent copies of the formula G described
in lemma 5.10 by randomly permuting the variable
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set. Let these random copies be Gy, Gs,...,G,. For
any fixed set T'-of size k,

1
Pr[G; does not accept T] < (1 — (m)ﬁ)
Since the G; are independently chosen, the probability
that some k-set is accepted by none of Gy,...,G, is

at most .
n r
(k)(l—(e, .

For r = k(e?vk)* logn, we get that this probability
is less than 1. Hence there must be some r copies
Gy,Ga,... , Gy, such that every set of size k is accepted
by at least one of them. Let our ZIIT formula for T
be £ = Vi Gi.

Clearly, F is (k — 1)-immune. It accepts every set
of size k and by monotonicity every set of size at least
k. Further,

L

size(F) < (\%c-) (ezx/l?)‘/’:knlogn < eVElnkglo0n,

o

6 Conclusions

We have shown a lower bound of Q(knlog(z2;))
on the size of monotone formulas computing T3, for
2 <k < %. We also showed that the same bound
holds in the monotone contact networks model. The
following questions remain open.

1. Our bound is still far from the best upper bound
known. Can this gap be reduced?

2. Does the Q(knlog(;27)) lower bound hold on the
size of formulas computing T3, for 2 < k < g,
even when negations are allowed? Note that there
exist contact networks with size O(kn), if nega-
tions are allowed.

3. Our result does not improve Khrapchenko’s lower
bound for the majority function. Can a lower
bound better than Q(n®) be shown for the size of
monotone formulas computing the majority func-
tion?

4. In the monotone formulas model, the complex-
ities of computing T3 and T, are the same.
However, this is not obvious in the monotone con-
tact networks model. Is there a lower bound of
Q(nlogn) on the size of monotone contact net-
works computing T _, ?



In this paper, we also considered LIIT formulas
computing T, for small k, and obtained essentially
tight bounds on the size of such formulas. Can these
results be generalized to depths greater than three?
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