Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science (1990)

St. Louis, MO, USA

Oct. 22, 1990 to Oct. 24, 1990

ISBN: 0-8186-2082-X

pp: 285-296 vol.1

C. Kaklamanis , Aiken Comput. Lab., Harvard Univ., Cambridge, MA, USA

ABSTRACT

The computational power of 2-D and 3-D processor arrays that contain a potentially large number of faults is analyzed. Both a random and a worst-case fault model are considered, and it is proved that in either scenario low-dimensional arrays are surprisingly fault tolerant. It is also shown how to route, sort, and perform systolic algorithms for problems such as matrix multiplication in optimal time on faulty arrays. In many cases, the running time is the same as if there were no faults in the array (up to constant factors). On the negative side, it is shown that any constant congestion embedding of an n*n fault-free array on an n*n array with Theta (n/sup 2/) random faults (or Theta (log n) worst-case faults) requires dilation Theta (log n). For 3-D arrays, knot theory is used to prove that the required dilation is Omega ( square root log n).

INDEX TERMS

knot theory, asymptotically tight bounds, random fault model, faulty arrays of processors, 2-D, 3-D, worst-case fault model, low-dimensional arrays, route, sort, systolic algorithms, congestion embedding

CITATION

F. Leighton

*et al*., "Asymptotically tight bounds for computing with faulty arrays of processors,"

*Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science(FOCS)*, St. Louis, MO, USA, 1990, pp. 285-296 vol.1.

doi:10.1109/FSCS.1990.89547

CITATIONS

SEARCH