The Community for Technology Leaders
2013 IEEE 54th Annual Symposium on Foundations of Computer Science (1984)
Singer Island, FL
Oct. 24, 1984 to Oct. 26, 1984
ISBN: 0-8186-0591-X
pp: 408-416
J.S. Chang , Courant Institute of Mathematical Sciences
ABSTRACT
We give a finiteness criteria for the potato-peeling problem that asks for the largest convex Polygon ('Potato') contained inside a given simple polygon, answering a question of J. Goodman. This leads to a polynomial-time, solution of O(n/sup 9/log n). The techniques used turn out to be useful for other cases of what we call the polygon inclusion and enclosure problem. For instance, the largest perimeter potato can be found in O(n/sup 6/) time and finding the smallest k-gon enclosing a given polygon can be done in O(n/sup 3/log k) steps.
INDEX TERMS
CITATION
J.S. Chang, C.K. Yap, "A Polynomial Solution For Potato-Peeling And Other Polygon Inclusion And Enclosure Problems", 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, vol. 00, no. , pp. 408-416, 1984, doi:10.1109/SFCS.1984.715942
88 ms
(Ver 3.1 (10032016))