2013 IEEE 54th Annual Symposium on Foundations of Computer Science (1969)

Oct. 15, 1969 to Oct. 17, 1969

ISSN: 0272-4847

pp: 222-230

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/SWAT.1969.9

ABSTRACT

A superAFL is a family of languages closed under union with unitary sets, intersection with regular sets, and nested iterated substitution and containing at least one nonunitary set. Every superAFL is a full AFL containing all context-free languages. If L is a full principal AFL, then S∞(L, the least superAFL containing L, is full principal. If L is not substitution closed, the substitution closure of L is properly contained in S∞ (L). The index languages form a superAFL which is not the least superAFL containing the one way stack languages. If L has a decidable emptiness problem, so does S∞ (L). If Ds is an AFA, L=L (Ds) and Dw is the family of machines whose data structure is a pushdown store of tapes of Ds, then L (Dw) = S∞(L) if and only if Ds is nontrivial. If Ds is uniformly erasable and L(Ds) has a decidable emptiness problem, then it is decidable if a member of Dw is finitely nested.

INDEX TERMS

CITATION

Sheila A. Greibach,
"Full AFLS and nested iterated substitution",

*2013 IEEE 54th Annual Symposium on Foundations of Computer Science*, vol. 00, no. , pp. 222-230, 1969, doi:10.1109/SWAT.1969.9