The Community for Technology Leaders
2016 International Conference on Frontiers of Information Technology (FIT) (2016)
Islamabad, Pakistan
Dec. 19, 2016 to Dec. 21, 2016
ISBN: 978-1-5090-5300-1
pp: 229-234
ABSTRACT
Feature selection is the process of selecting a subset of features that provides maximum of the information, present otherwise in entire dataset. The process is very helpful when input for different tasks including classification, clustering, rule extraction and many others, is large. Rough Set Theory, right from its emergence, has been widely used for feature selection due to its analysis friendly nature. Various approaches exist in literature for this purpose. However, majority of them are computationally too expensive and suffer a significant performance bottleneck. In this paper we have proposed a new feature selection approach based on rough set theory, using random feature vector generation method. The proposed approach is a two steps method. At first, it generates a random feature vector and verifies its suitability for being a potential candidate solution. If it fulfills the criteria, it is selected and optimized, otherwise a new subset is formed. The proposed approach was verified using five publicly available datasets. Results have shown that proposed approach is computationally more efficient and produces optimal results.
INDEX TERMS
Rough sets, Feature extraction, Fish, Algorithm design and analysis, Computers, Mechanical engineering, Computational efficiency,reducts, feature selection, rough set theory, attribute dependency
CITATION
Muhammad Summair Raza, Usman Qamar, "A Rough Set Based Feature Selection Approach Using Random Feature Vectors", 2016 International Conference on Frontiers of Information Technology (FIT), vol. 00, no. , pp. 229-234, 2016, doi:10.1109/FIT.2016.049
92 ms
(Ver 3.3 (11022016))