The Community for Technology Leaders
2016 International Conference on Frontiers of Information Technology (FIT) (2016)
Islamabad, Pakistan
Dec. 19, 2016 to Dec. 21, 2016
ISBN: 978-1-5090-5300-1
pp: 169-172
Maria Shusanti Febrianti , School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia
Egi Hidayat , School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia
Aciek Ida Wuryandari , School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia
Ary Setijadi Prihatmanto , School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia
Carmadi Machbub , School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia
ABSTRACT
In this paper, an implementation of gesture recognition using Hidden Markov Model to classify particular gestures on Sigeh Penguten traditional Dance is presented. The preliminary research is focused on recognition of dancers' hand gestures, i.e. ‘Sembah Depan’, ‘Sembah Kiri’, and ‘Sembah Kanan’ gestures based on their collected hands marker positions. The experimental results show that the proposed approach is able to classify the three mentioned gestures even with only the hands' positions to a certain degree. However, the reliability of the proposed approach requires further improvement.
INDEX TERMS
Microsoft Kinect, Dance Recognition, Hidden Markov Model,
CITATION
Maria Shusanti Febrianti, Egi Hidayat, Aciek Ida Wuryandari, Ary Setijadi Prihatmanto, Carmadi Machbub, "Preliminary result on gesture recognition of Sigeh Penguten Dance using Hidden Markov Model", 2016 International Conference on Frontiers of Information Technology (FIT), vol. 00, no. , pp. 169-172, 2016, doi:10.1109/FIT.2016.7857559
175 ms
(Ver 3.3 (11022016))