The Community for Technology Leaders
Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition (2002)
Washinton D.C.
May 20, 2002 to May 21, 2002
ISBN: 0-7695-1602-5
pp: 0267
Chiraz Ben Abdelkader , University of Maryland at College Park
Larry Davis , University of Maryland at College Park
Ross Cutler , Microsoft Research
A motion-based, correspondence-free technique for human gait recognition in monocular video is presented. We contend that the planar dynamics of a walking person are encoded in a 2D plot consisting of the pairwise image similarities of the sequence of images of the person, and that gait recognition can be achieved via standard pattern classification of these plots. We use background modelling to track the person for a number of frames and extract a sequence of segmented images of the person. The self-similarity plot is computed via correlation of each pair of images in this sequence.For recognition, the method applies Principal Component Analysis to reduce the dimensionality of the plots, then uses the k-nearest neighbor rule in this reduced space to classify an unknown person. This method is robust to tracking and segmentation errors, and to variation in clothing and background. It is also invariant to small changes in camera viewpoint and walking speed.The method is tested on outdoor sequences of 44 people with 4 sequences of each taken on two different days, and achieves a classification rate of 77%. It is also tested on indoor sequences of 7 people walking on a treadmill, taken from 8 different viewpoints and on 7 different days. A classification rate of 78% is obtained for near-fronto-parallel views, and 65% on average over all view.

L. Davis, R. Cutler and C. B. Abdelkader, "Motion-Based Recognition of People in EigenGait Space," Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition(FG), Washinton D.C., 2002, pp. 0267.
90 ms
(Ver 3.3 (11022016))