The Community for Technology Leaders
2008 IEEE Fourth International Conference on eScience (2008)
Indianapolis, IN
Dec. 7, 2008 to Dec. 12, 2008
ISBN: 978-1-4244-3380-3
pp: 356-357
A common paradigm for scientific computing is distributed message-passing systems, and a common approach to these systems is to implement them across clusters of high-performance workstations. As multi-core architectures become increasingly mainstream, these clusters are very likely to include multi-core machines. However, the theoretical models which are currently used to develop communication algorithms across these systems do not take into account the unique properties of processes running on shared-memory architectures, including shared external network connections and communication via shared memory locations. Because of this, existing algorithms are far from optimal for modern clusters. Additionally, recent attempts to adapt these algorithms to multicore systems have proceeded without the introduction of a more accurate formal model and have generally neglected to capitalize on the full power these systems offer. We propose a new model which simply and effectively captures the strengths of multi-core machines in collective communications patterns and suggest how it could be used to properly optimize these patterns.
Multi-core Clusters, Collective Communications, Postal Model
Christine Task, Arun Chauhan, "A Model for Communication in Clusters of Multi-core Machines", 2008 IEEE Fourth International Conference on eScience, vol. 00, no. , pp. 356-357, 2008, doi:10.1109/eScience.2008.154
93 ms
(Ver 3.3 (11022016))