Design and Verification of the Sequential Systems Automata
Using Temporal Logic Specifications

Ursu A., Gruita G., Zaporjan S.
Technical University of Moldova, Information Technology Department,
Blvd. Stefan Cel Mare 168, Chisinau, Moldova, Romania
phone: (+373-2) 49-70-18, fax: (+373-2) 24-71-14

Abstract
A design and verification method of sequential systems
automata using temporal logic specifications is
proposed. The method is based on well-known
Z.Manna and P.Wolper temporal logic satisfiability
analysis procedure. A new satisfiability analysis
algorithm for temporal logic specifications which
includes past time as well as future time temporal logic
operators is proposed. A case study is carried out
which deals with two design examples.

The method is developed to facilitate the design of
the finite state automata of the sequential systems and
is based on the analysis of the temporal logic
specifications which describe the desired input/output
behaviour of the systems. The method can be
considered in fact a state identification method since it
determines the states of the sequential system.
Determining the finite state automaton is important
not only for the design process. The verification of a
sequential system is usually based on the automaton of
the designed system. Generating the finite state
automaton of the designed system the designer can
analyse the properties of this automaton and to
determine whether the initial specifications of the
system are correct or not. More over the designer
usually needs to test an implemented system. To do
this the designer may need the automaton of the
system. Verifying the initial automaton generated
from the functional specifications with the automaton
generated from the temporal logic specifications of the
input/output behaviour of the implemented system it is
possible to determine if the implementation is correct
or not. Te method is dedicated:
• to facilitate the design of the sequential systems
 finite state automata;
• to verify the correctness of the finite state
 automata implementation;

provided the timing charts are given in both cases and
the initial automaton of the system is also known in the
verification case. We consider the method as two
different methods in two different cases: the design
case and the verification case.

The design method consists of the following steps:
1. functional description of the designed sequential
system;
2. design of the temporal logic specifications which
describe the input/output behaviour of the system;
3. satisfiability analysis of the temporal logic
specifications;
4. design of the finite state-graph of the
specifications;
5. design of the finite automaton of the
specifications;
6. design of the state and output logical functions.

The verification method consists of the following
steps:
1. functional description of the verified sequential
system as follows from its timing charts;
2. design of the temporal logic specifications which
describe the input/output behaviour of the system;
3. satisfiability analysis of the temporal logic
specifications;
4. design of the finite state-graph of the
specifications;
5. design of the finite automaton of the
specifications;
6. analysis of the equivalence relation between the
 initial automaton of the system and the
 automaton generated from the temporal logic
 specifications of the timing charts.

The satisfiability analysis of the specifications (step 3)
is based on an algorithm like the Z.Manna and
P.Wolper procedure but is developed by authors to
include the analysis of the past time intervals
formulas.