The Community for Technology Leaders
2012 23rd International Workshop on Database and Expert Systems Applications (2006)
Krakow, Poland
Sept. 4, 2006 to Sept. 8, 2006
ISSN: 1529-4188
ISBN: 0-7695-2641-1
pp: 497-501
John N. Wilson , University of Strathclyde, UK
Robert Japp , University of Strathclyde, UK
Mathias Neumuller , University of Strathclyde, UK
Richard Gourlay , University of Strathclyde, UK
The effective grouping, or partitioning, of semistructured data is of fundamental importance when providing support for queries. Partitions allow items within the data set that share common structural properties to be identified efficiently. This allows queries that make use of these properties, such as branching path expressions, to be accelerated. Here, we evaluate the effectiveness of several partitioning techniques by establishing the number of partitions that each scheme can identify over a given data set. In particular, we explore the use of parameterised indexes, based upon the notion of forward and backward bisimilarity, as a means of partitioning semistructured data; demonstrating that even restricted instances of such indexes can be used to identify the majority of relevant partitions in the data.
John N. Wilson, Robert Japp, Mathias Neumuller, Richard Gourlay, "Extracting Partition Statistics from Semistructured Data", 2012 23rd International Workshop on Database and Expert Systems Applications, vol. 00, no. , pp. 497-501, 2006, doi:10.1109/DEXA.2006.59
98 ms
(Ver 3.3 (11022016))