The Community for Technology Leaders
Proceedings. Tenth International Workshop on Database and Expert Systems Applications. DEXA 99 (1999)
Florence, Italy
Sept. 1, 1999 to Sept. 3, 1999
ISBN: 0-7695-0281-4
pp: 180
Romaric Besançon , Swiss Federal Institute of Technology
Martin Rajman , Swiss Federal Institute of Technology
Jean-Cédric Chappelier , Swiss Federal Institute of Technology
ABSTRACT
The design of efficient textual similarities is an important issue in the domain of textual data exploration. Textual similarities are for example central in document collection structuring (e.g. clustering), or in Information Retrieval (IR) which relies on the computation of textual similarities for measuring the adequacy between a query and documents.The objective of this paper is to present and compare several textual similarity measures in the framework of the Distributional Semantics (DS) model for IR. This model is an extension of the standard Vector Space model, which further takes the co-frequencies between the terms in a given reference corpus into account. These co-frequencies are considered to provide a distributional representation of the "semantics" of the terms. The co-occurrence profiles are used to represent the documents as vectors.Practical retrieval experiments using DS-based similarity models have been conducted in the framework of the AMARYLLIS evaluation campaign. The results obtained are presented. They indicate significant improvement of the performance in comparison with the standard approach.
INDEX TERMS
Textual similarity, Information Retrieval, Distributional Semantics
CITATION

J. Chappelier, R. Besançon and M. Rajman, "Textual Similarities Based on a Distributional Approach," Proceedings. Tenth International Workshop on Database and Expert Systems Applications. DEXA 99(DEXA), Florence, Italy, 1999, pp. 180.
doi:10.1109/DEXA.1999.795163
93 ms
(Ver 3.3 (11022016))