The Community for Technology Leaders
Proceedings Ninth International Workshop on Database and Expert Systems Applications (Cat. No.98EX130) (1998)
Vienna, Austria
Aug. 26, 1998 to Aug. 28, 1998
ISBN: 0-8186-8353-8
pp: 745
Joachim Herbst , Daimler Benz AG
Dimitris Karagiannis , University of Vienna
ABSTRACT
Current workflow management systems (WFMS) offer little aid for the acquisition of workflow models and their adaptation to changing requirements. To support these activities we propose to integrate machine learning and workflow management. This enables an inductive approach to workflow acquisition and adaptation by processing traces of manually enacted workflows. We present a machine learning component that combines two different machine learning algorithms. In this paper we focus mainly on the first one, which induces the structure of the workflow, based on the induction of hidden markov models. The second algorithm, a standard decision rule induction algorithm, induces transition conditions. The main concepts have been implemented in a prototype, which we have validated using artificial process traces. The induced workflow models can be imported by the business process management system ADONIS.
INDEX TERMS
CITATION

D. Karagiannis and J. Herbst, "Integrating Machine Learning and Workflow Management to Support Acquisition and Adaptation of Workflow Models," Proceedings Ninth International Workshop on Database and Expert Systems Applications (Cat. No.98EX130)(DEXA), Vienna, Austria, 1998, pp. 745.
doi:10.1109/DEXA.1998.707491
93 ms
(Ver 3.3 (11022016))