The Community for Technology Leaders
2016 International Conference on Distributed Computing in Sensor Systems (DCOSS) (2016)
Washington, DC, USA
May 26, 2016 to May 28, 2016
ISSN: 2325-2944
ISBN: 978-1-5090-1461-3
pp: 102-104
ABSTRACT
Air pollution has become a major issue of modern megalopolis because of industrial emissions and increasing urbanization along with traffic jams and heating/cooling of buildings. Monitoring urban air quality is therefore required by municipalities and by the civil society. Current monitoring systems rely on reference sensing stations that are precise but massive, costly and therefore seldom. In this ongoing work, we focus on an alternative or complementary approach, using a network of low cost and autonomic wireless sensors, allowing for a finer spatiotemporal granularity of air quality sensing. We tackle the optimization problem of sensor deployment and propose an integer programming model, which allows to find the optimal network topology while ensuring air quality monitoring with a high precision and the minimum financial cost. Most of existing deployment models of wireless sensor networks are generic and assume that sensors have a given detection range. This assumption does not fit pollutant concentrations sensing. Our model takes into account interpolation methods to place sensors in such a way that pollution concentration is estimated with a bounded error at locations where no sensor is deployed.
INDEX TERMS
Monitoring, Atmospheric modeling, Wireless sensor networks, Correlation, Air pollution
CITATION

A. Boubrima, W. Bechkit and H. Rivano, "Optimal Deployment of Dense WSN for Error Bounded Air Pollution Mapping," 2016 International Conference on Distributed Computing in Sensor Systems (DCOSS), Washington, DC, USA, 2016, pp. 102-104.
doi:10.1109/DCOSS.2016.26
96 ms
(Ver 3.3 (11022016))