Coding of Image Residuals with Tailbiting Convolutional Codes and BCJR Decoding

Mirek Novak

Dept. of Information Technology, Lund University, S-221 00 Lund, Sweden, mirek@it.lth.se

Abstract

Image residuals have been source encoded using modulated codewords from a tailbiting convolutional code. The source encoder represents each residual with the closest codeword, using the BCJR decoding algorithm.

INTRODUCTION

This work uses the duality of source encoding/channel decoding for still image coding. The BCJR decoding scheme for tailbiting convolutional codes, [1], is used to find close representatives for observed data.

An image, u, is divided into blocks, u_i, of n pels. Each block is the sum of a model block, μ_i, and a residual, r_i, see, e.g., [2]. If the model order is m, then r_i, is in a $k = n - m$ dimensional subspace of \mathbb{R}^n. We here concentrate on coding the difficult part; the residual.

The residual, r_i, is transformed using a nonunitary, modified KL-transform, G, into a k-dimensional transformed residual vector, s_i, of uncorrelated components with unit variance and zero mean. Hence $s_i = Gr_i$. The probability density of the transformed residual vectors is spherically symmetric. For transformed residuals obtained from images, the distribution of its components is close to Laplacian.

In Euclidean space, \mathbb{R}^k, a set of vectors, $\{Y_i\}_{i=1}^{2^kR}$ is generated from the codewords, $\{c_i\}_{i=1}^{2^kR}$, of a length $q \cdot k$, rate $1/c$, tailbiting convolutional code, [3], by mapping q consecutive bits from c_i to the corresponding component of Y_i, i.e., a modulation. Each Y_i can then be represented by qk/c bits, or q/c bits per component.

The encoder works as follows: after observing s_i, it is “decoded”, using the tailbiting BCJR. The scheme produces a qk/c bit long sequence, d_i^*, which defines the codeword c_i^*. This codeword in turn defines Y_i^*, which is a good approximation of s_i. The approximation of the transformed residual is then $\hat{s}_i = Y_i^{**}$.

The decoder obtains d_i^*. Using the convolutional encoder it produces the codeword c_i^* and from this it generates Y_i^{**} which is used as the approximation \hat{s}_i. The image residual approximation is computed using the inverse transform as $\hat{r}_i = G^{-1}\hat{s}_i$.

Finally, the reconstructed image block is computed as $\hat{u}_i = \mu_i + \hat{r}_i$.

The scheme has been used with rate 1/4 and 1/8 codes (0.5 bpp and 0.25 bpp) for coding of the residuals of the standard 512 \times 512 test images lenna and baboon.

REFERENCES

This work has been supported by the Swedish Foundation for Strategic Research – Personal Computing and Communication.