DCC 1997

This book contains the presentations from the seventh Data Compression Conference held March 25–27, 1997, in Snowbird, Utah. The conference was sponsored by the IEEE Computer Society Technical Committee on Computer Communications.

GENERAL CHAIR: James A. Storer – Brandeis University
PROGRAM CHAIR: Martin Cohn – Brandeis University

PROGRAM COMMITTEE

Ronald B. Arps – IBM
Timothy C. Bell – University of Canterbury
Bruno Carpentieri – University of Salerno
Martin Cohn – Brandeis University
Michelle Effros – California Institute of Technology
Robert M. Gray – Stanford University
Paul G. Howard – AT&T
Arnaud Jacquin – Lucent Technologies
Aaron B. Kiely – NASA
Glen G. Langdon – University of California, Santa Cruz
D. LeGall – C-Cube
Abraham Lempel – Technion
Alistair Moffat – University of Melbourne
Kannan Ramchandran – University of Illinois
John H. Reif – Duke University
Robert L. Renner – Ball Aerospace
Eve A. Riskin – University of Washington
Arturo A. Rodriguez – Scientific Atlanta
James A. Storer – Brandeis University
Gary Sullivan – PictureTel
John D. Villasenor – University of California, Los Angeles
Jeffrey Vitter – Duke University
Ian H. Witten – University of Waikato
Kenneth Zeger – University of California, San Diego
Jacob Ziv – Technion

ACKNOWLEDGEMENTS

The program committee gratefully acknowledge the support of the Computer Science Department of Brandeis University. In particular, we thank Myrna Fox and Jeanne DeBaie for their administration of the conference. We also thank Penny Storms of the IEEE Computer Society Press for supervising the production of these proceedings.
The Capocelli Prize

is awarded annually for a student-authored DCC paper,
in memory of our friend and colleague Ranato M. Capocelli,
May 3, 1940 – April 8, 1992.

The 1996 Capocelli Prize acknowledges

Earl Levine
Department of Electrical Engineering, Stanford University
for the paper

“Stochastic Vector Quantization, and Stochastic VQ with State Feedback Using Neural Networks”

Previous winners:

1995 — Suzanne Bunton, Department of Computer Science and Engineering, University of Washington, Seattle, “The Structure of DMC”
Contents

Technical Sessions

Session 1

Linear-Time, Incremental Hierarchy Inference for Compression.........................3
C.G. Nevill-Manning and I.H. Witten†
Stanford University, ‡University of Waikato
Models of English Text..12
W.J. Teahan and J.G. Cleary
University of Waikato
Towards Understanding and Improving Escape Probabilities in PPM....................22
J. Åberg, Y.M. Shtarkov†, and B.J.M. Smeets
Lund University, †Russian Academy of Sciences
A Percolating State Selector for Suffix-Tree Context Models............................32
S. Bunton
University of Washington
An Executable Taxonomy of On-Line Modeling Algorithms............................42
S. Bunton
University of Washington

Session 2

An Analytical Treatment of Channel-Induced Distortion in Run Length Coded Image Subbands...52
J. Garcia-Frias and J.D. Villasenor
University of California at Los Angeles
Capturing Global Redundancy to Improve Compression of Large Images...........62
B.L. Kess and S.E. Reichenbach
University of Nebraska–Lincoln
Progressive Image Coding on Noisy Channels..72
P.G. Sherwood and K. Zeger
University of California at San Diego
Multimode Image Coding for Noisy Channels..82
S.L. Regunathan, K. Rose, and S. Gadkari
University of California at Santa Barbara
L∞-Constrained High-Fidelity Image Compression via Adaptive Context Modeling ...91
X. Wu, W.K. Choi†, and P. Bao†
University of W. Ontario, †Chinese University of Hong Kong,
‡Hong Kong Polytechnic University
Session 3

A Lexicographic Framework for MPEG Rate Control .. 101
D.T. Hoang, E.L. Linzer†, and J.S. Vitter‡
Digital Video Systems Inc, †C-Cube Microsystems, ‡Duke University

Content-Adaptive Postfiltering for Very Low Bit Rate Video 111
A. Jacquin, H. Okada†, and P. Crouch‡
Lucent Technologies, †Sharp Corporation, ‡AT&T Corporation

Library-Based Coding: a Representation for Efficient Video Compression
and Retrieval .. 121
N. Vasconcelos and A. Lippman
MIT Media Laboratory

Session 4

On Adaptive Strategies for an Extended Family of Golomb-Type Codes 131
G. Seroussi and M.J. Weinberger
Hewlett-Packard Laboratories

An Iterative Technique for Universal Lossy Compression of
Individual Sequences .. 141
D. Manor and M. Feder
Tel Aviv University

Significantly Lower Entropy Estimates for Natural DNA Sequences 151
D. Loewenstern and P.N. Yianilos‡
Rutgers University, †NEC Research Institute

Session 5

Text Compression via Alphabet Re-Representation .. 161
P.M. Long, A.I. Natsev†, and J.S. Vitter‡
National University of Singapore, †Duke University

Low-Cost Prevention of Error Propagation for Data Compression with
Dynamic Dictionaries ... 171
J.A. Storer and J. Reif‡
Brandeis University, ‡Duke University

Block Sorting and Compression ... 181
Z. Arnavut and S.S. Magliveras
University of Nebraska

Redundancy of the Lempel-Ziv-Welch Code ... 191
S.A. Savari
Lucent Technology

A Corpus for the Evaluation of Lossless Compression Algorithms 201
R. Arnold and T. Bell
University of Canterbury
Session 6

Fast Weighted Universal Transform Coding: Toward Optimal, Low Complexity Bases for Image Compression ...211
 M. Epos
 California Institute of Technology

Image Coding based on Mixture Modeling of Wavelet Coefficients and a Fast Estimation-Quantization Framework ...221
 S.M. LoPresto, K. Ramchandran, and M.T. Orchard
 University of Illinois at Urbana-Champaign, †Princeton University

Universal Transform Coding Based on Backward Adaptation ...231
 V.K. Goyal, J. Zhuang, and M. Vetterli
 University of California at Berkeley

Efficient Context-Based Entropy Coding Lossy Wavelet Image Compression241
 C. Chrysafis and A. Ortega
 University of Southern California

An Embedded Wavelet Video Coder Using Three-Dimensional Set Partitioning in Hierarchical Trees (SPIHT) ...251
 B.-J. Kim and W.A. Pearlman
 Rensselaer Polytechnic Institute

Session 7

Optimal Fractal Coding is NP-Hard ...261
 M. Ruhl and H. Hartenstein
 Universität Freiburg

Fast and Compact Volume Rendering in the Compressed Transform Domain271
 S. Chen and J.H. Reif
 Duke University

Compression of Functions Defined on Surfaces of 3D Objects ..281
 K. Kolarov and W. Lynch
 Interval Research Corporation

On Maximal Parsings of Strings ..291
 H. Helfgott and M. Cohn
 Brandeis University

A Codebook Generation Algorithm for Document Image Compression ..300
 Q. Zhang, J.M. Danskin, and N.E. Young
 Dartmouth College

Session 8

A Fixed-Rate Quantizer Using Block-Based Entropy-Constrained Quantization and Run-Length Coding ..310
 D. Yu and M.W. Marcellin
 Oak Technology Inc, †University of Arizona
Adaptive Vector Quantization Using Generalized Threshold Replenishment 317
 J.E. Fowler and S.C. Ahalt
 Ohio State University
Quadtree Based Variable Rate Oriented Mean Shape-Gain Vector Quantization 327
 R. Hazaoui, B. Ganz, and D. Saupe
 Universitat Freiburg
Entropy-Constrained Successively Refinable Scalor Quantization 337
 H. Jafarkhani, H. Brunk, and N. Farvardin
 University of Maryland
Conditional Entropy Coding of VQ Indexes for Image Compression 347
 X. Wu, J. Wen‡, and W.H. Wong‡
 University of W. Ontario, ‡Chinese University of Hong Kong, †UCLA

Session 9

Efficient Approximate Adaptive Coding .. 357
 A. Turpin and A. Moffat
 University of Melbourne
An Overhead Reduction Technique for Mega-State Compression Schemes 367
 A. Bookstein, S.T. Klein¶, and T. Raital¶
 University of Chicago, ¶Bar-Ilan University, ¶University of Turku
Text Compression by Context Tree Weighting ... 377
 J. Åberg and Y.M. Shtarkov†
 Lund University, †Russian Academy of Sciences

Session 10

Image Coding Using Optimized Significance Tree Quantization 387
 G.M. Davis, and S. Chawla
 Dartmouth College
Fast Residue Coding for Lossless Textual Image Compression 397
 C. Constantinescu and R. Arps
 IBM Almaden Research Center
A Remapping Technique Based on Permutations for Lossless Compression of Multispectral Images 407
 Z. Arnaout
 University of Nebraska at Omaha

x
Poster Session

Video Compression with Weighted Finite Automata .. 419
J. Albert, S. Frank, U. Hafner, and M. Unger
University of Würzburg, Germany

Pattern Matching Image Compression with Predication Loop 420
D. Arnaud and W. Szpankowski
Ecole Nationale Supérieure des Télécommunications, †Purdue University

C.L. Bajaj and G. Zhuang
Purdue University

Calligraphic Character Boundary Coding with Rational B-Spline Based on Energy Minimization Using Genetic Algorithm ... 422
P.G. Bao and S.W.-C. Lam
Polytechnic University of Hong Kong

Temporally Scalable Video Coding Using Nonlinear Deinterlacing 423
S. Bayrakeri and R.M. Mersereau
Georgia Institute of Technology

Orthonormal Sets of Filters Obtained by Modulations and Rotations of a Prototype ... 424
R. Bernardini and J. Kovacevic †
LCAV-SSC-DE, EPFL, †Bell Laboratories

A Pipelined Architecture Algorithm for Image Compression 425
S. Bhattacharjee, S. Das, D.R. Chowdhury, and P.P. Chaudhuri
Indian Institute of Technology

Generalization and Improvement to PPM’s “Blending” 426
S. Bunton
University of Washington

A New Trellis Vector Residual Quantizer with Applications to Speech and Image Coding ... 427
B. Carpentieri and G. Motta †
Dip. Di Informatica ed Applicazioni University di Salerno, †Volen Center for Complex Systems Brandeis University

Out-of-Loop Motion Compensation for Reduced Complexity Video Encoding 428
C.D. Creusere
Naval Air Warfare Center Weapons Division

A Fast Three Dimensional Discrete Cosine Transform 429
R.K.W. Chan and M.C. Lee
The Chinese University of Hong Kong

Perceptual Rate Control Algorithms for Fax-Based Video Compression 430
Y.-J. Chiu and T. Berger †
Lucent Technologies, †Cornell University
Motion-Adapted Content-Based Temporal Scalability in Very Low Bitrate Video Coding ... 431

C.-T. Chu, D. Anastassiou, and S.-F. Chang
Columbia University

Intraframe Low Bit Rate Video Coding Robust to Packet Erasure ... 432

V.J. Crump and T.R. Fischer
Washington State University

Compression of Silhouette-like Images Based on WFA ... 433

K. Culik II, J. Karif, and V. Valenta
University of South Carolina, †University of Iowa

Fractal Color Compression in the L*a*b Uniform Color Space ... 434

I.M. Danciu and J.C. Hart
Washington State University

An Experimental Comparison of Several Lossless Image Coders for Medical Images ... 435

K. Denecker, J. Van Overloop, and I. Lemahieu
University of Gent

Symbol Ranking Text Compressors ... 436

P. Fenwick
The University of Auckland

Adaptive Vector Quantization—Part I: A Unifying Structure ... 437

J.E. Fowler
The Ohio State University

Adaptive Vector Quantization—Part II: Classification and Comparison of Algorithms ... 438

J.E. Fowler
The Ohio State University

Compressing Address Trace Data for Cache Simulations ... 439

A. Fox and T. Grün
Universität des Saarlandes

Encoding of Intervals with Conditional Coding ... 440

U. Gräf
Technical University of Darmstadt

Progressive Ziv-Lempel Encoding of Synthetic Images ... 441

D. Greene, M. Vishwanath, F. Yao, and T. Zhang
Xerox Palo Alto Research Center

Perceptually Lossless Image Compression ... 442

P.J. Hahn and V.J. Mathews
University of Utah

Generalized Node Splitting and Bilevel Image Compression ... 443

H.A. Helfgott and J.A. Storer
Brandeis University
Compression Comparisons for Multiview Stereo 444
 D. K. Jones and M. W. Maier
 University of Alabama in Huntsville

Image Compression in Medical Image Databases Using Set Redundancy 445
 K. Karadimitriou and M. Fenstermacher
 M.D. Anderson Cancer Center

Some Entropic Bounds for Lempel-Ziv Algorithms 446
 S. R. Kosaraju and G. Manzini†
 The John Hopkins University, †University of Turin

Data Compression Using Text Encryption ... 447
 H. Kruse and A. Mukherjee
 University of Central Florida

Enhancements to the JPEG Implementation of Block Smoothing Method 448
 G. Lakhani
 Texas Tech University

Region-Based Video Coding with Embedded Zero-Trees 449
 J. Liang, I. Moccagatta, and K. Oehler
 Texas Instruments

An Optimal-Joint-Coordinate Block Matching Algorithm for
Motion-Compensated Coding .. 450
 C. C. Lin, D. J. Pease, and R. R. Raje†
 Syracuse University, †Purdue University

The Search Accuracy of Tree-Structured VQ 451
 J. Lin
 Eastern Connecticut State University

Effects of Boundary Artifacts in Parallel Implementations of Wavelet
Compression for Large-Format Digital Framing Reconnaissance
Camera Systems ... 452
 D. C. L. von Berg
 Naval Research Laboratory

Noncausal Image Prediction and Reconstruction 453
 J. F. P. Marchand and H. E. Rhody
 Rochester Institute of Technology

Lossy/Lossless Coding of Bi-Level Images ... 454
 B. Martins and S. Forchhammer
 Technical University of Denmark

Low Bit Rate Color Image Coding with Adaptive Encoding of Wavelet
Co-Efficients ... 455
 S. Meadows and S. Mitra
 Texas Tech University
A Framework for Application Specific Image Compression .. 456

S. Moni and S. Sista
Purdue University

Word Based Multiple Dictionary Scheme for Text Compression with Application to 2D Bar Code ... 457

K.S. Ng and L.M. Cheng
City University of Hong Kong

Bi-Level Image Compression Using Adaptive Tree Model ... 458

K. Nguyen-Phi and H. Weinrichter
Vienna University of Technology

Fast Implementation of Two-Level Compression Method Using QM-Coder 459

K. Nguyen-Phi and H. Weinrichter
Vienna University of Technology

Parametric Warping for Motion Estimation .. 460

A. Nostratinia
Rice University

Content-Based Retrieval from Compressed-Image Databases 461

P.O. Ogunbona and P. Sangassapaviriya
University of Wollongong

Effective Management of Compressed Data with Packed File Systems 462

Y. Okada, M. Tokuyo, S. Yoshida, N. Okayasu†, and H. Shimoi†
Fujitsu Laboratories Limited, †Fujitsu Limited

Efficient Storage Compression for 3D Regions .. 463

G. Panagopoulou, S. Sirmakessis, and A. Tsakalidis
University of Patras and Computer Technology Institute

“Universal” Transform Image Coding Based on Joint Adaptation of Filter Banks, Tree Structures and Quantizers ... 464

V. Pavlovic, K. Ramchandran, and P. Moulin
University of Illinois

Compression of Generalised Gaussian Sources ... 465

A.T. Puga and A.P. Alves
INESC-Porto

Robust Image Coding with Perceptual-Based Scalability ... 466

M.G. Ramos and S.S. Hemami
Cornell University

Study of Japanese Text Compression ... 467

N. Satoh, T. Morihara, Y. Okada, and S. Yoshida
Fujitsu Laboratories Ltd.

Selective Resolution for Surveillance Video Compression 468

I. Schiller, C.-K. Chuang, S.M. King, and J.A. Storer†
KTAADN, †Brandeis University
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Fast Block-Sorting Algorithm for Lossless Data Compression</td>
<td>469</td>
</tr>
<tr>
<td>M. Schindler</td>
<td></td>
</tr>
<tr>
<td>Vienna University of Technology</td>
<td></td>
</tr>
<tr>
<td>Multiple Descriptions Encoding of Images</td>
<td>470</td>
</tr>
<tr>
<td>P. Subrahmanya and T. Berger</td>
<td></td>
</tr>
<tr>
<td>Cornell University</td>
<td></td>
</tr>
<tr>
<td>Recursive Block Structured Data Compression</td>
<td>471</td>
</tr>
<tr>
<td>M. Tilgner, M. Ishida†, and T. Yamaguchi†</td>
<td></td>
</tr>
<tr>
<td>Tokyo Institute of Technology, †Advantest Laboratories LTD</td>
<td></td>
</tr>
<tr>
<td>Context-Tree Weighting Method for Text Generating Sources</td>
<td>472</td>
</tr>
<tr>
<td>T.J. Tjalkens, P.A.J. Volf, and F.M.J. Willems</td>
<td></td>
</tr>
<tr>
<td>Eindhoven University of Technology</td>
<td></td>
</tr>
<tr>
<td>Generalised Locally Adaptive DPCM</td>
<td>473</td>
</tr>
<tr>
<td>T. Seemann and P. Tischer</td>
<td></td>
</tr>
<tr>
<td>Monash University</td>
<td></td>
</tr>
<tr>
<td>Facsimile—Images of the Future</td>
<td>474</td>
</tr>
<tr>
<td>M.J. Turner and K.C. Halton†</td>
<td></td>
</tr>
<tr>
<td>De Montfort University, †BT Labs</td>
<td></td>
</tr>
<tr>
<td>The ELS-Coder: A Rapid Entropy Coder</td>
<td>475</td>
</tr>
<tr>
<td>W.D. Withers</td>
<td></td>
</tr>
<tr>
<td>United States Naval Academy and Pegasus Imaging Corp.</td>
<td></td>
</tr>
<tr>
<td>Arithmetic Coding with Improved Solution for the Carry-Over Problem</td>
<td>476</td>
</tr>
<tr>
<td>X. Xue and W. Gao</td>
<td></td>
</tr>
<tr>
<td>Harbin Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>High Performance Arithmetic Coding for Small Alphabets</td>
<td>477</td>
</tr>
<tr>
<td>X. Xue and W. Gao</td>
<td></td>
</tr>
<tr>
<td>Harbin Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>Error Resiliency Issues in Wavelet Compression</td>
<td>478</td>
</tr>
<tr>
<td>A. Youssef</td>
<td></td>
</tr>
<tr>
<td>The George Washington University</td>
<td></td>
</tr>
<tr>
<td>POCS Based Error Concealment for Packet Video</td>
<td>479</td>
</tr>
<tr>
<td>G.-S. Yu, M.W. Marcellin†, and M.M.-K. Liu‡</td>
<td></td>
</tr>
<tr>
<td>SONY Semiconductor Company of America, †University of Arizona, †Quickturn Design Inc.</td>
<td></td>
</tr>
<tr>
<td>Industry Workshop</td>
<td>483</td>
</tr>
<tr>
<td>Author Index</td>
<td>485</td>
</tr>
</tbody>
</table>