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A b s t r a c t  

MOZART is a concurrent fault simulator for large circuits 
described at  the RT, functional, gate, and switch levels. Perfor- 
mance is gained by means of techniques aimed at the reduction of 
unnecessary activity. Two such terhniqiies are levelized two-pass 
simulation, which minimizes the number of events and evalua- 
tions, and list event scheduling, which allows optimized process- 
ing of simultaneous (fraternal) events for concurrent machines. 
Moreover, efficient handling of abnormally large or active faulty 
machines can dramatically improve fault simulator performance. 
These and related issues are discussed in this paper: both analyt- 
ical and experimental evidence is provided for the effectiveness of 
the solutions adopted in MOZART. A new performance metric 
is introduced for fault simulation. This is based on comparison 
with the serial algorithm and is more accurate than those used 
up till now. 

1 Introduction 

Fault simulation is the process of estimating the effectiveness 
of a sequence of test vectors by determining which faults in a 
given set will be detected by its application. The coverage, i.e. 
the percentage of faults detected, can be rhecked against a pre- 
determined threshold: if the simulated faults are representative 
of the prevailing failure mechanisms, this threshold can then be 
related to  the desired defect level. In addition, the list of unde- 
tected faults can help the designer improve the coverage of the 
test vectors, as well as remove logic redundancies appearing as 
undetectable faults. Its range of features makes fault simulation 
the ideal choice for test quality assessment, whenever i t  is appli- 
cable. However, the excessive amount of computer time required 
often hinders its use. 

The paper discusses the solutions adopted in the development 
of MOZART and introduces analytical models and a new and 
more accurate metric of concurrent simulation performance, to  
comment on a significant set of experiments. 

2 The MOZART system 

MOZART is a concurrent multilevel fault simiilatnr. It currently 
handles the switch, gate, functional, and RT lrvr ls  

The switch level model is an enhancement of  Bryant’s [l]: 
delays are handled and transistors are considered open when 
Vcs = 0. At the gate level primitives are scalar unidirectional 
elements with a variety of output options. At the Functional 
Level the user defines primitives for describing RAMS, ROMs 
and PLAs. An interface is provided t.r) external modules that 
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allows users t o  describe the function of blncks by a programming 
language. Hardware is described at  the RT level by guarded state- 
ments ,  each of which is a set of assignments of expressions (oper- 
ators) t o  registers or wires (carriers) conditiiined by  a guard. A 
guard is either a level or an edge sensitive rxpression. 

MOZART descriptions are hierarchical: their building blocks 
are called units: instances of other units can he used in their 
bodies (but, recursion is not supported). 

Delay t.imes can be assigned to earh olierator and carrier, with 
the exception of transistors that switch as s o o n  as the  signals at 
their terminals change. In this way, iutrinsic and output delays 
can be taken into account separately. 

3 Multilevel Simulation 

A possible model for Hardware Description I,anguage interpre- 
tation is a network of operators and carriers whrisr evaluations 
are triggered by the occurrence of events. Indeed the MOZART 
implementation model closely follows this apprimch: the data 
structure representing a circuit is a network of descriptors, one 
for each operator and carrier. Even-driven selective trace is used 
t o  exploit circuit latency. Pending events arc krpt in a priority 
queue called a time queue. A two-pass procedure [ Z ]  is used as 
a general framework: two distinct phases are iterated for each 
simulation time: 

The first phase is called propagation, since i t  is essentially 
related to  the propagation of activity via the fanout links. 
During this phase, all events prpsent i t i  the t.ime queue for 
that simulat,ion time are retrievpd. T h e  iietwork topology 
is examined and fanrmt elcments are selrctrd for evaluation 
by placing them in appropriate eualudton  17sts. 

The second phase is called evalaofzon since selected ele- 
ments are evaluated and events may t h u s  be scheduled or 
canceled. 

Iteration of the two passes stops wheii thrrr are no more events 
in the time queue for the given time. 

During propagation, if a fanout element helongs t o  the gate 
level, the new value being propagatt’d is sliircd i n  its descriptor, 
and the element itself is linked i n  ail evaluntirm l is t .  If it is 
a transistor, the new state is immediatclv criniputcd and any 
adjacent perturbed nodes are linked iii ati t*valIlation list. If it 
is a node or an RT element, no values arc? propagated, hnt the 
element is nevertheless linked in an evaluation l is t .  The input 
(i.e. fanin) values will be considered m l y  at the evaluation time. 

Fault simulation of N faults requires simulating the behavior 
of the good machine and N f au l ty  ones In M O Z A R T ,  faults are 
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stuck-at-O/stuck-ab1 on all wires and stuck-on, stuck-open on all 
transistors. 

In  Concurrent Fault Simulation, a Reference (R) machine and 
Concurrent (C) machines (one for each fault) are simulated si- 
multaneously. The close structural and behavioral similarity be- 
tween these machines means that a differential representation 
of information is optimal, and at any time only those parts of 
C-machines which differ from the R-machine are explicitly repre- 
sented. The total state of a C-machine can be inferred by using 
the state of the R-machine for the implicit parts. 

This differential representation of information requires inte- 
gration of the data structure of the good machine simulator with 
a structure for the representation of C machines. In MOZART, 
this specific data structure is the machine list. Machine lists 
describe the state of all C machines present a t  the particular 
primitive element. One or more lists for each primitive element 
of the circuit link the R and C machine descriptors. Gates, tran- 
sistors and nodes need only one machine list, whereas functional 
elements may require severel. 

C-machine descriptors exist only if (and as long as) their con- 
tents are different from the associated R-machine descriptors. C- 
machines have identification numbers (C-numbers) and all ma- 
chine lists are sorted according to them; C-machine descriptors 
with identical C-numbers will appear on different lists, and are 
best viewed as the descendants of a single ancestor. An ancestor 
and its descendants constitute the explicit part of a C-machine. 
In concurrent fault simulation, the ancestor is the fault source, 
i.e. the fault description associated with the element in which 
the fault occurs, while the descendants are the fault effects, i.e. 
the erroneous behaviors caused by the fault. on other elements of 
the network. The main difference between fault sources and fault 
effects is that the former are always explicit, whereas the latter 
are subjected to  divergence and convergence operations. 

Divergence is the operation of creating a new descriptor to  
represent information for a C machine that becomes different 
from the reference descriptor. Similarly, convergence is the anni- 
hilation of a concurrent descriptor as it becomes identical to its 
associated reference descriptor. 

4 MOZART Fault Simulation Algorithm 

Introduction of the C machines makes the simulation algorithm 
more complex. During propagation and element evaluation we 
must also consider the values of all the C machines differentially 
coded by the machine list. It. is thus advantageous to use a single 
unified control mechanism for the coordinated traversal of an ar- 
bitrary number of machine lists. The major benefits are reduced 
programming complexity and high-speed execution. A suitable 
traversal mechanism is Multi-List Traversal (or MLT), described 
in [3]. This mechanism controls the entire traversal, including 
event processing for R and C machines, the handling of explicit 
as well as implicit C-descriptors, divergences and convergences, 
and various other tasks. 

MLT traverses lists of items appearing i n  C-machine order, so 
that those for the same machine on different lists are reached and 
then processed simultaneously. When a C-descriptor is present 
on some lists only, the R-machine information ( in the first item 
of every list) replaces the absent C-descriptor. 

The lists to  be traversed in coordination are either the input, 
output, and state lists of a single element or the output lists of 
interconnected elements. The former case is called Evaluation 
MLTand takes place during the sec(ind step to compiite the new 
state of complex elements. The latter case is called Propagation 
MZT [4] and takes place during the first step t i r  deliver new 
signals to  fanout elements, wliich keep local copies of them (gates 

and switches). 
The cost of concurrent simulation on large circuits containing 

a significant number of faults is proportional to the number of 
descriptors traversed. An efficient algorithm should traverse the 
minimum number of descriptors. Fault droppzng is widely used 
for this purpose and is described is in section 6. Several additional 
techniques have been adopted in MOZART in order to improve 
performance. First, the number of events should be minimized, 
since every event may trigger a propagation and some evaluation 
MLTs. Minimizing the number of events thus reduces the number 
of traversals. For this purpose, MOZART uses the Levelized Two 
Pass algorithm (LTP) [Z], which is based on the idea of ordering 
the propagation of events through the network. This can be 
obtained with levelizing. 

To levelize a network means to define a partial order among 
network elements, so that ,  a t  a given time, the value of an element 
can depend only on the values of elements having a lower level. In 
the second step, element evaluation starts from those having the 
lowest level. With this method, an evaluation is not repeated as 
the result of variation of an element with a lower level. Levelizing 
is possible a t  all levels of abstraction, if lotips of elements having 
zero delay are forbidden. How to levelize a network is described 
in [2]. 

Levelizing is more efficient if the number of zero-delay ele- 
ments in the network is large. The presence of  t h ~ s e  elements is 
quite common in the early stages of a project ( t s .p . ,  \vhen there are 
no accurate timing data) ,  or in the design of circuits hv means of 
library models (e.g. seni-custom circuits). The timing character- 
ization of these models is generally accomplished by associating 
the delays only with the peripheral elements of the cell, leaving 
the inner elements a t  zero delay. 

In addition to  greater efficiency (see Sectirin 6) ,  there are also 
several advantages regarding correctness. If t WO events occur a t  
the same simulation time on the same list and machine, then 
during the evaluation MLT triggered by the first event the emit- 
ting lists have not reached their final and correct configuration. 
This causes element evaluation with inronsistent input and/or 
state values, which, for certain seqnential primitives, may result 
in erroneous and irreversible state changes. 

LTP minimizes the number of events. However, this does not 
prevent the scheduling of more events for different machines a t  
a given simulation time on a list. Inefficiency would result from 
letting each of them trigger a propagation MLr. List  event and 
fraternal event processing are used to group such MLTs into one 
MLT only. 

4.1 

In concurrent fault simulation, an event is a &tuple ( E ,  C, T ,  S ) ,  
where E i s  the element affected by the activity, C is the C-number 
of the concurrent machine, T is the occurrence time, and S is the 
new state. Events with the same E and T values are said to be 
fraternal. Separate descriptors are conventionally placed in the 
time queue for each event. This, however, makes the coordinated 
processing of fraternal events difficult. In TblOZART, therefore, 
one descriptor only serves a set of fraternal events. It represents a 
list event and indicates the presence of activitv 011 a machine list. 
A list event is a 3-tuple ( E ,  T ,  F ) ,  where E and T are the same 
as before and F is the number of fraternal events it corresponds 
to. 

The items in the machine lists contain a flag showing if they 
are scheduled or quiescent and, if scheduled, the value of C ,  T and 
S ,  so that by traversing the list associated to the list event, t.he 4- 
tuple ( E ,  C, S ,  T )  can be reconstructed. This approach may seem 
cumbersome at first, but it has the major advantage of allowing 
all fraternal events to be processed in a single MLT. Since LTP 

List Events and Fraternal Event Processing 

Paper 42.2 
693 



guarantees that a single list event will be processed at  a given 
time on a given list, the number of machine lists traversed is 
minimized. 

Fraternal Event Processing (FEP)  also ensures that ,  if an  
R-event is due, the R-machine is processed first during MLT. 
This is important, because the R-machine represents the absent 
(implicit) C-machines on many of the lists being traversed and 
thus should be updated before any such C-machine is evaluated 
so as to avoid useless convergences and divergences. 

List events, as described here, are similar to  the composed 
events introduced in [5] and adopted in [6]. We do not, how- 
ever, process list events before propagat.ing the activity they en- 
tail, as proposed in [6]. By contrast, the way we do propagation 
MLT (an emitting list is traversed only once as such) allows us 
to  avoid the creation of the so-called phantom gates, without 
resorting to  preliminary processing of list events. 

To estimate the benefits of FEP,  let us consider the case in 
which the R-machine is quiescent. Processing an event reqiiires 
the scanning of a machine list to  reach a C-machine descriptor 
and therefore the traversalof a number of items. We compare the 
number of traversals in FEP  with list events (Nf") and in the 
strategy which deals with each fraternal event separately ( N ; ) .  
Let L be the length of a machine list and E ( L )  its expected value. 
Without FEP,  the average pos ihn ing  cost for a set of fraternal 
events is given by: 

because for each event positioning starts from the beginning of 
the list. However, with FEP t.he average positioning cost is: 

E(N/ '* )  = ( E ( L )  t 1)-- E ( F )  
E ( F ) - t  1 

since positioning starts from the last processed fraternal event 
and the gain is: 

By similar reasoning, if the R-machine is active one obtains: 

(3) 

(4) 

In both cases, the advantage of FEP  increases linearly with F .  

4.2 Trigger Inhibition 

The number of traversals is minimized by the above two tech- 
niques. One can also optimize by minimizing the actions asso- 
ciated with the traversals. Traversal of one block to position on 
the next has a very low cost compared to  traversal associated 
with evaluation. We particularly want to avoid evaluations that 
produce results already available (31. 

Let E be the set of events that caused the RILT. A simple 
case is that it is useless to evaluate machine C, if no events in 
E affect either C; or the R-machine. More complex cases arise 
when events for the R-machine belong t u  E .  Here. it is necessary 
to  see if machine C; is explicit and quiescent on all those lists 
where events for the R-machine occur. If this happens, trigger 
inhibition takes place and machine C, should not be evaluated on 
the son lists since none of its inputs is changing. Two cases must 
be considered at  this point. If machine C; is already explicit on a 
son list, no particular action is required, whereas if it is implicit, 
a change in the R-machine must cause a divergence. Machine 
C, must be diverged with the old state of the R-machine, which 

is therefore temporarily saved before starting MLT. A list for 
which the value of the R-machine has changed is called a potential 
divergence list. This attribute is tested when trigger inhibition is 
recognized on a C-machine to decide whether tu diverge or not. 

5 Fault detection and fault dropping 

Fault detection is compared observatirin of  the R and C machine 
values on a series of predeternuned test points (generally the 
outputs) to  see whether the test pattern has covered some of 
the simulated faults. This observation takes place in suitable 
temporal windows (linked to the tester timing), called detection 
windows. When a fault is detected c in  t,he outputs, the simula- 
tion of the corresponding C-machine is normally stopped. Fault 
dropping is the mechanism which suspends the simulation of the 
detected faults, so as to free memorp and considerably reduce the 
number of traversals. 

Fault detection and fault dropping are part of the more gen- 
eral issue of observation and statistics. Machine behaviors must 
be observed at  test points and statistics such as size (number 
of descriptors) and number of events for each machine must be 
collected, so as to identify machines I>ehaving very differently 
to  the R-machine, and thus contradicting the assumption upon 
which the concurrent simulation is based. The simulation time 
of these machines may become very high (90 )"o and more) and 
dominate the entire simulation. Two types of these machines 
exist: hyperactive and hypertrophic machines. 

The former generally concern faults which affect critical con- 
trol signals, causing oscillations. These faults generally represent 
less than 5 % of the total. These machines are dropped, even if 
they have not yet been detected at  test points, as the correspond- 
ing faults are catastrophic for circuit operation. An example of 
this kind of fault is given in Fig. 1. The s-a-1 fault on the control 
signal of latch L2 modifies the behavior of the circuit, allowing 
the oscillation of the relative C-machine when CK holds the value 
1. 

The second type of machines concern faults that inhibit net- 
work initialization, causing huge S machines. These machines 
can only be potentially detected. A t,vpical example is t.he s-a-0 
on the CK input of latch L l  in Fig. I .  It should be ncited that 
this fault, will be detected bv anv i l l p i i t  pat tern covering h t h  
s-a-0 and s-a-1 faults on the output cnf L1 ,  altliriugh there is no 
equivalence between t.hese faults. 

A fault is marked as hyperactive and dropped when the num- 
ber of events on the associated C-machine has heen t.ou high with 
respect to  the number of events on the R-machine iii a given in- 
terval of time. 

In the same way a hypertrophic fault is dropped when the size 
of the related C-machine becomes comparable to that of the R- 
machine and the fault is already marked as potentially detected. 

6 Experimental results 

We shall now present data from several experiments to  support 
the claim that the techniques described effectively improve the 
efficiency of multilevel fault simulation. 

Table 1 collects general information on the circuits and input 
vectors used in the simulation test runs. 

C6288a and C6288b are two versions of a 16 x 16 parallel 
multiplier belonging to the set of benchmark circuits proposed 
in [7]. In C6288a, 0-delay elements are used, whereas C6288b 
is a unit-delay version. Their comparison shows the potential 
advantages of LTP simulation. LSSD is a small circuit designed 
according to the well-known testability methodology [SI. It has 
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Figure 1: Hyperactive and hyI>ertrophic faults 

1, 
simulation 
t i le 50 .. 

40 

been simulated with and without circuit initialization to show 
the impact of uninitialized faulty machines. GA is a gate array 
circuit, BS is a bit sliced processor, and hTTJI,'r8a, hI1JLT8b, and 
MULT8c are three successive refinements of a 8 x 8 multiplier. 

Table 2 reports CPU times (measured on a DEC VAX 8650 
running VMS) as a function of the numbers of C-machines simu- 
lated. Data  refer to  the simulation of the R-machine alone (col- 
umn R)  and of various percentages of all possible C-machines 
(after fault collapsing). Times for 25%, 50%, and 75% of the C- 
machines were averaged over several independent random sam- 
ples of faults. 

In what follows T,, is the time fnr the simulation of the R- 
machine alone for circuit a and T,,, that for the concurrent 
simulation of all faults. The ratio ?!:: is written IC, 

Data from Table 2, normalized with respect, to T,, are plotted 
in Fig. 2, while Fig. 3 plots U,( t ) ,  i.e. the fraction of undetected 
faults as a function of t.he fraction of applied test vectors for 
circuit a .  

We interpret the plots in Fig. 2 with refrrence ti1 Fig. 3. If 
we assume the immediate dropping of a fault upon detection, the 
normalized mean life of a C-machine for circuit a is given by 

In general, higher values of AI', lead to increased values of K,, 
as one would obviously expect. This is the case for circuit GA, 
which has the highest value for both AI,  and IC,. There are, how- 

30 _. 

ever, circuits such as C6288a, C6288h, and LSSD2, which have 
significantly different K ,  values in spite of t.heir similar Ma val- 
ues. First of all, the high value of K ~ ~ ~ I L T ~ ~  is due to the present 
absence of trigger inhibition at the swit.cli level. To understand 

sider that the impact of fault detectioii and dropping time, which 
is approximately the same in absolute terms, is greater in relative 

20 the difference between the two versions of (:6288, one should con- 

(5) 
I i 

/ /  
' i  

/ 1' 
/ i  

/ 1' 
I /..' 

/.. 
/ /.' .. 

/ ./' 
/ / 

Q' 

circuit 

' LSSDl 
LSSD2 

MULT8a 

R 
6.33 

153.42 
136.05 
68.93 
68.82 

231.01 
0.37 
0.98 

41.80 

25% 
17.51 

385.17 
1109.62 

92.98 
271.26 
261.13 

0.45 
1.71 

311.52 

RAMs 

? 

~. . 

50% 
37 47 

573 28 
2330 98 

117 05 
505 7 l  
280 41 

0 54 
2 36 

696 81 - 

patterns faults 

2250 9635 
4386 
252 224 

56 1388 
56 2498 

~~ ~ 

75% 
59.51 

819 68 
4571 99 

140 61 
694 31 
316 68 

0 63 
3 12 

931 24 

_. _ _  

._ .~ 

100% ___ 
83.99 

1057.39 
5844.46 

169.04 
899.11 
395.27 

0.72 
3.85 

1540.27 

Table 2: 
C-machines 

Times (in seconds) as a function of the number of 
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u n d e t e c t e d  
faults 

MULTBA - M - 0.0489 
ES - M - 0.1254 

- - - - - LSSDl - M - 0. 1306 

_ _ _ _ _  MULTEB - M - 0 . 1 5 7 9  

_ _ _ _ _  LSSO2 - M - 0.2000 
MULTBC - M - 0.2178 

C6288 - M - 0 . 2 2 5 1  

G I  - M - 0 . 5 4 8 3  

> 
0 . 1  0 2 0.3 0 . 4  0 . 5  0 . 6  0.7 0 . E  0 9 1 . 0  

p a t t e r n s  

Figure 3: Coverage as a function o f  apldie(l test vectors 

whereas in LSSDZ they are not. As a consequence, large unini- 
tialized C-machines develop in LSSD2, due t o  faults on the clock 
input lines of latches. These fault.s, n11 the other hand, cause 
solid detection if the C-machines have been initialized prior to 
fault injection. Their effects are amplified b v  the small size of 
the circuit, which prevents dropping of hypertrophic machines. 

On circuits larger than LSSD, the  speedup achieved by drop- 
ping hypertrophic and hyperactive machines is often quite signifi- 
cant and therefore difficult to quantify, sin& t l l ~  mere presence of 
a few hyperactive faults can prevent a s imula t i t~n  run from end- 
ing in a reasonable time. For circuit G A ,  it has been established 
that dropping hypertrophic and hyperactive machines (2.2% of 
the total) accelerates simulation by a factor greater than 100. 

M ,  also allows us, via a comparison with serial fault simula- 
tion, to  define a metric for fault simulation prrformance. Indeed, 
if nf, is the total number of fatilts for rirciiit a ,  T,far then the 

a 
C6288a 
C6288h 
G A  
LSSDl 
LSSD2 
BS 
hlULT8a 
h l  U LT8 b 
MULT8c 

1 nl. 
7741 
77‘14 
9635 
939 
939 
224 
61 

1388 
2498 

M u  
0.2251 
0.2251 
0.5483 
0.1 306 
0.2000 
0.1261 
0.04 U 8 
0.1579 
0 .2  I78 

- 
h,  

13 27 1 3 1  I 
6 U9 253 1 

4206 1230 
2 15 50 I 
13 06 1 1  5 
I i l  l i l  
1 9 5  2 1  
3 93 56 0 
3685 1 1 8  

~- 
s, 

631 1 
1314 8 
229 6 
647 6 
77 9 

315 5 
67 4 

437 7 
69 7 

Table 3: Serial vs (‘oncurrent S i m ~ l a t i n ~ ~  

time for serial fault simulation (with fault dropping), is approxi- 
mately given by 

The speed gain of concurrrnt ovcr s r r ~ a l  fallit 91mulatio11 is ex- 
pressed by 

Table 3 reports data  derived from those of Table 1 and 2. Besides 
G,, it  reports the average speed of simulation of a C-machine, 
relative to the speed of simulation of the R-machine as 

s, = nfaTra (8) 
Tcfa - Tm ’ 

S ,  is used in [4,6] as an indicator of the performance of concur- 
rent fault simulation and is shown here to allow comparison with 
previous work. We believe, however, that G, is a more accurate 
indicator than S,. S, only accords concurrent fault simulation 
the benefits of fault dropping. In spite of their importance, these 
are neither specific to  that approach, nor an integral part of it.  If 
we consider the results in [4] relative to circuit “Mult 0-del” (it is 
C6288a with a longer test sequence), S, is extremely high (8036), 
but the low value of G, (59) shows that most of the simulation 
is carried out with very few faults active (M, = 0.0148). 

Also, by considering only the time directly accountable to the 
simulation of the faulty machines, S, tends to  amplify t,he gains 
of concurrent fault simulation when they are already high (i.e., 
T,, is close to  T,f,), as in the case of C6288h and MULT8a. 

slmulatlon 
t 2 m e  900 
5 

800 

7 0 0  

600 

500 

400 

300 

200 

100 

, 
/ , , , 

I 
I 

I 

, 
0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 B 0 . 9 1 . 0  

p a t t e r n s  

Figure 4: Simulation C P U  times for exper~ments LSSDl and 
LSSD2 
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We now consider the effect4 of Fraternal F,\r~it Processing and 
List Events With reference to equations (1-3), l a b l e  4 reports 
the values of E ( F )  measured on circiiits G h ,  CG288a, C6288b 
and MULT8b and the values nf $${f!J 

Table 4: Effiriencv of fraternal event prncessing 

Equation 1 shows that ,  without FEF’, t lit. t imr spent for an 
event occurring on a C-machine (with no simultaneous event for 
the R-machine on the same list.) is biiiind t o  increase roughly 
linearly with E ( L ) .  Alternatel,~, with FEP  and List Events, it  
varies as R; while not constant, this grnws at a much lower 
rate then E (  L ) .  

As far as event,s for the R-machine are concerned, thcir costs 
are proportional to the length of  machine lists. Finally, events 
for C-machines that occur  a t  the same timr as events for the 
R-machine on the same list require no additivnal overhead for 
collecting and traversinglists. Their c r x t  is therefore independent 
of n and very low. lf the nurnher of C-machines is varied as in 
Fig. 2, then the number of events processed per serond decreases 
as more faults are simulated. T h e  is then an optimum value 
of faults that maximize simulation speed. However, with FEP  
this optimum value often falls near to or even beyond n f a .  If 
this is not the case, dividing faults in lots and processing them 
in several passes saves simulation time. 

A comparison of data for the two experiments on circuit 
(36288 (see Table 2) shows the efficiency of Ievrlized simulation. 
The example is particularly favnrablc t c  LTF’ simulation for two 
reasons: all elements in C6288a have 0 di,lay and the logical depth 
of the circuit is very high Both factnrs determinc how far useless 
events can propagate before thev arr slapprd I I V  either primary 
outputs or elements with noIi-zero delays 

Lastly, we consider thr  advantages ol inullilrvel simulation. 
A comparison of MlJLT8a, hlULTRb, and RlULT8c shows the 
reduction in CPIJ time oht,ained hy resorting t i l  more abstract 
descriptions of the circuit. However, rrne shriiild alsn notice the 
reduced significance of fault roverage eslahlislicd at gate, and RT 
levels with respect to that tiblainrd w i t h  a faithful structural 
description 

7 Conclusions 

In this paper, the prinriples of miiltilrvel fniilt simulation have 
been discussed and the algorithms adirptcd in hlUZART fnr their 
efficient implementation have been prrsrntrd. The emphasis in 
those techniques is on the rethirt inn nf t h e  number of traversed 
items in concurrent niarliine lists and t lie avoidance uf iinneces- 
sary evaluations and cvents. Tlir irripnct citi simulation perfor- 
mance has been studied both analytically ancl rxperinientally. A 
new and more accurate metric cif fault siniiilation performance 
has been introduced. The scattering of valiies reported in sec- 
tion 6 shows the need for a large set r i f  significant benchmarks. 
Considerable work is still required i r i  this tlirrctiim to permit the 
meaningful comparison (if prrigrarns and algririthrris. However, 
the same results show that hvlO%Alt‘T is adequatr f i x  the fault 

simulation of the custom and ASIC IC’s for which it is currently 
employed. 

It has been seen that hyperactive and hypertrophic faults 
adversely impact fault simulation speed. Their identification 
and removal is therefore mandatory. The way this is done in 
MOZART is reasonably efficient and can be improved in two 
ways: earlier detection of oscillating machines; non-simulation of 
faulty machines, such as the one discussed in section 5, to which 
the two following conditions apply: 

their simulation could not predict more than possible de- 
tection. 

their detection can be inferred from that of other non- 
equivalent faults. 

Potential savings exceed 50% of the simulation time on sequential 
circuits. 
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