
The Perforinance of the Concurrent
Fault Sirriulation Algorithms in MOZART

Silvano GAI Piw J,uca LIONTESSORO Fabio SOMENZI
CENS-CNR Dip. Automiilica e Informatica SGS-THOMSON Microelectronics

Politecnico di Torino Pol i t r rniro di Torino 20041 Agrate Brianza, I ta ly
10129 Torino, Italy 101 29 Torino, Italy

A b s t r a c t

MOZART is a concurrent fault simulator for large circuits
described at the RT, functional, gate, and switch levels. Perfor-
mance is gained by means of techniques aimed at the reduction of
unnecessary activity. Two such terhniqiies are levelized two-pass
simulation, which minimizes the number of events and evalua-
tions, and list event scheduling, which allows optimized process-
ing of simultaneous (fraternal) events for concurrent machines.
Moreover, efficient handling of abnormally large or active faulty
machines can dramatically improve fault simulator performance.
These and related issues are discussed in this paper: both analyt-
ical and experimental evidence is provided for the effectiveness of
the solutions adopted in MOZART. A new performance metric
is introduced for fault simulation. This is based on comparison
with the serial algorithm and is more accurate than those used
up till now.

1 Introduction

Fault simulation is the process of estimating the effectiveness
of a sequence of test vectors by determining which faults in a
given set will be detected by its application. The coverage, i.e.
the percentage of faults detected, can be rhecked against a pre-
determined threshold: if the simulated faults are representative
of the prevailing failure mechanisms, this threshold can then be
related to the desired defect level. In addition, the list of unde-
tected faults can help the designer improve the coverage of the
test vectors, as well as remove logic redundancies appearing as
undetectable faults. Its range of features makes fault simulation
the ideal choice for test quality assessment, whenever i t is appli-
cable. However, the excessive amount of computer time required
often hinders its use.

The paper discusses the solutions adopted in the development
of MOZART and introduces analytical models and a new and
more accurate metric of concurrent simulation performance, to
comment on a significant set of experiments.

2 The MOZART system

MOZART is a concurrent multilevel fault simiilatnr. It currently
handles the switch, gate, functional, and RT lrvr ls

The switch level model is an enhancement of Bryant’s [l]:
delays are handled and transistors are considered open when
Vcs = 0. At the gate level primitives are scalar unidirectional
elements with a variety of output options. At the Functional
Level the user defines primitives for describing RAMS, ROMs
and PLAs. An interface is provided t.r) external modules that

Paper 42.2
692

allows users t o describe the function of blncks by a programming
language. Hardware is described at the RT level by guarded state-
ments , each of which is a set of assignments of expressions (oper-
ators) t o registers or wires (carriers) conditiiined by a guard. A
guard is either a level or an edge sensitive rxpression.

MOZART descriptions are hierarchical: their building blocks
are called units: instances of other units can he used in their
bodies (but, recursion is not supported).

Delay t.imes can be assigned to earh olierator and carrier, with
the exception of transistors that switch as s o o n as the signals at
their terminals change. In this way, iutrinsic and output delays
can be taken into account separately.

3 Multilevel Simulation

A possible model for Hardware Description I,anguage interpre-
tation is a network of operators and carriers whrisr evaluations
are triggered by the occurrence of events. Indeed the MOZART
implementation model closely follows this apprimch: the data
structure representing a circuit is a network of descriptors, one
for each operator and carrier. Even-driven selective trace is used
t o exploit circuit latency. Pending events arc krpt in a priority
queue called a time queue. A two-pass procedure [Z] is used as
a general framework: two distinct phases are iterated for each
simulation time:

The first phase is called propagation, since i t is essentially
related to the propagation of activity via the fanout links.
During this phase, all events prpsent i t i the t.ime queue for
that simulat,ion time are retrievpd. T h e iietwork topology
is examined and fanrmt elcments are selrctrd for evaluation
by placing them in appropriate eualudton 17sts.

The second phase is called evalaofzon since selected ele-
ments are evaluated and events may t h u s be scheduled or
canceled.

Iteration of the two passes stops wheii thrrr are no more events
in the time queue for the given time.

During propagation, if a fanout element helongs t o the gate
level, the new value being propagatt’d is sliircd i n its descriptor,
and the element itself is linked i n ail evaluntirm l is t . If it is
a transistor, the new state is immediatclv criniputcd and any
adjacent perturbed nodes are linked iii ati t*valIlation list. If it
is a node or an RT element, no values arc? propagated, hnt the
element is nevertheless linked in an evaluation l is t . The input
(i.e. fanin) values will be considered m l y at the evaluation time.

Fault simulation of N faults requires simulating the behavior
of the good machine and N f au l ty ones In M O Z A R T , faults are

25th ACM/IEEE Design Automation Conference@

c~254o-3/&yoooo/o692$01 .OO 0 1988 IEEE

stuck-at-O/stuck-ab1 on all wires and stuck-on, stuck-open on all
transistors.

In Concurrent Fault Simulation, a Reference (R) machine and
Concurrent (C) machines (one for each fault) are simulated si-
multaneously. The close structural and behavioral similarity be-
tween these machines means that a differential representation
of information is optimal, and at any time only those parts of
C-machines which differ from the R-machine are explicitly repre-
sented. The total state of a C-machine can be inferred by using
the state of the R-machine for the implicit parts.

This differential representation of information requires inte-
gration of the data structure of the good machine simulator with
a structure for the representation of C machines. In MOZART,
this specific data structure is the machine list. Machine lists
describe the state of all C machines present a t the particular
primitive element. One or more lists for each primitive element
of the circuit link the R and C machine descriptors. Gates, tran-
sistors and nodes need only one machine list, whereas functional
elements may require severel.

C-machine descriptors exist only if (and as long as) their con-
tents are different from the associated R-machine descriptors. C-
machines have identification numbers (C-numbers) and all ma-
chine lists are sorted according to them; C-machine descriptors
with identical C-numbers will appear on different lists, and are
best viewed as the descendants of a single ancestor. An ancestor
and its descendants constitute the explicit part of a C-machine.
In concurrent fault simulation, the ancestor is the fault source,
i.e. the fault description associated with the element in which
the fault occurs, while the descendants are the fault effects, i.e.
the erroneous behaviors caused by the fault. on other elements of
the network. The main difference between fault sources and fault
effects is that the former are always explicit, whereas the latter
are subjected to divergence and convergence operations.

Divergence is the operation of creating a new descriptor to
represent information for a C machine that becomes different
from the reference descriptor. Similarly, convergence is the anni-
hilation of a concurrent descriptor as it becomes identical to its
associated reference descriptor.

4 MOZART Fault Simulation Algorithm

Introduction of the C machines makes the simulation algorithm
more complex. During propagation and element evaluation we
must also consider the values of all the C machines differentially
coded by the machine list. It. is thus advantageous to use a single
unified control mechanism for the coordinated traversal of an ar-
bitrary number of machine lists. The major benefits are reduced
programming complexity and high-speed execution. A suitable
traversal mechanism is Multi-List Traversal (or MLT), described
in [3]. This mechanism controls the entire traversal, including
event processing for R and C machines, the handling of explicit
as well as implicit C-descriptors, divergences and convergences,
and various other tasks.

MLT traverses lists of items appearing i n C-machine order, so
that those for the same machine on different lists are reached and
then processed simultaneously. When a C-descriptor is present
on some lists only, the R-machine information (in the first item
of every list) replaces the absent C-descriptor.

The lists to be traversed in coordination are either the input,
output, and state lists of a single element or the output lists of
interconnected elements. The former case is called Evaluation
MLTand takes place during the sec(ind step to compiite the new
state of complex elements. The latter case is called Propagation
MZT [4] and takes place during the first step t i r deliver new
signals to fanout elements, wliich keep local copies of them (gates

and switches).
The cost of concurrent simulation on large circuits containing

a significant number of faults is proportional to the number of
descriptors traversed. An efficient algorithm should traverse the
minimum number of descriptors. Fault droppzng is widely used
for this purpose and is described is in section 6. Several additional
techniques have been adopted in MOZART in order to improve
performance. First, the number of events should be minimized,
since every event may trigger a propagation and some evaluation
MLTs. Minimizing the number of events thus reduces the number
of traversals. For this purpose, MOZART uses the Levelized Two
Pass algorithm (LTP) [Z], which is based on the idea of ordering
the propagation of events through the network. This can be
obtained with levelizing.

To levelize a network means to define a partial order among
network elements, so that , a t a given time, the value of an element
can depend only on the values of elements having a lower level. In
the second step, element evaluation starts from those having the
lowest level. With this method, an evaluation is not repeated as
the result of variation of an element with a lower level. Levelizing
is possible a t all levels of abstraction, if lotips of elements having
zero delay are forbidden. How to levelize a network is described
in [2].

Levelizing is more efficient if the number of zero-delay ele-
ments in the network is large. The presence of t h ~ s e elements is
quite common in the early stages of a project (t s .p . , \vhen there are
no accurate timing data) , or in the design of circuits hv means of
library models (e.g. seni-custom circuits). The timing character-
ization of these models is generally accomplished by associating
the delays only with the peripheral elements of the cell, leaving
the inner elements a t zero delay.

In addition to greater efficiency (see Sectirin 6) , there are also
several advantages regarding correctness. If t WO events occur a t
the same simulation time on the same list and machine, then
during the evaluation MLT triggered by the first event the emit-
ting lists have not reached their final and correct configuration.
This causes element evaluation with inronsistent input and/or
state values, which, for certain seqnential primitives, may result
in erroneous and irreversible state changes.

LTP minimizes the number of events. However, this does not
prevent the scheduling of more events for different machines a t
a given simulation time on a list. Inefficiency would result from
letting each of them trigger a propagation MLr. List event and
fraternal event processing are used to group such MLTs into one
MLT only.

4.1

In concurrent fault simulation, an event is a &tuple (E , C, T , S) ,
where E i s the element affected by the activity, C is the C-number
of the concurrent machine, T is the occurrence time, and S is the
new state. Events with the same E and T values are said to be
fraternal. Separate descriptors are conventionally placed in the
time queue for each event. This, however, makes the coordinated
processing of fraternal events difficult. In TblOZART, therefore,
one descriptor only serves a set of fraternal events. It represents a
list event and indicates the presence of activitv 011 a machine list.
A list event is a 3-tuple (E , T , F) , where E and T are the same
as before and F is the number of fraternal events it corresponds
to.

The items in the machine lists contain a flag showing if they
are scheduled or quiescent and, if scheduled, the value of C , T and
S , so that by traversing the list associated to the list event, t.he 4-
tuple (E , C, S , T) can be reconstructed. This approach may seem
cumbersome at first, but it has the major advantage of allowing
all fraternal events to be processed in a single MLT. Since LTP

List Events and Fraternal Event Processing

Paper 42.2
693

guarantees that a single list event will be processed at a given
time on a given list, the number of machine lists traversed is
minimized.

Fraternal Event Processing (FEP) also ensures that , if an
R-event is due, the R-machine is processed first during MLT.
This is important, because the R-machine represents the absent
(implicit) C-machines on many of the lists being traversed and
thus should be updated before any such C-machine is evaluated
so as to avoid useless convergences and divergences.

List events, as described here, are similar to the composed
events introduced in [5] and adopted in [6]. We do not, how-
ever, process list events before propagat.ing the activity they en-
tail, as proposed in [6]. By contrast, the way we do propagation
MLT (an emitting list is traversed only once as such) allows us
to avoid the creation of the so-called phantom gates, without
resorting to preliminary processing of list events.

To estimate the benefits of FEP, let us consider the case in
which the R-machine is quiescent. Processing an event reqiiires
the scanning of a machine list to reach a C-machine descriptor
and therefore the traversalof a number of items. We compare the
number of traversals in FEP with list events (Nf") and in the
strategy which deals with each fraternal event separately (N ;) .
Let L be the length of a machine list and E (L) its expected value.
Without FEP, the average pos ihn ing cost for a set of fraternal
events is given by:

because for each event positioning starts from the beginning of
the list. However, with FEP t.he average positioning cost is:

E(N/ '*) = (E (L) t 1)-- E (F)
E (F) - t 1

since positioning starts from the last processed fraternal event
and the gain is:

By similar reasoning, if the R-machine is active one obtains:

(3)

(4)

In both cases, the advantage of FEP increases linearly with F .

4.2 Trigger Inhibition

The number of traversals is minimized by the above two tech-
niques. One can also optimize by minimizing the actions asso-
ciated with the traversals. Traversal of one block to position on
the next has a very low cost compared to traversal associated
with evaluation. We particularly want to avoid evaluations that
produce results already available (31.

Let E be the set of events that caused the RILT. A simple
case is that it is useless to evaluate machine C, if no events in
E affect either C; or the R-machine. More complex cases arise
when events for the R-machine belong t u E . Here. it is necessary
to see if machine C; is explicit and quiescent on all those lists
where events for the R-machine occur. If this happens, trigger
inhibition takes place and machine C, should not be evaluated on
the son lists since none of its inputs is changing. Two cases must
be considered at this point. If machine C; is already explicit on a
son list, no particular action is required, whereas if it is implicit,
a change in the R-machine must cause a divergence. Machine
C, must be diverged with the old state of the R-machine, which

is therefore temporarily saved before starting MLT. A list for
which the value of the R-machine has changed is called a potential
divergence list. This attribute is tested when trigger inhibition is
recognized on a C-machine to decide whether tu diverge or not.

5 Fault detection and fault dropping

Fault detection is compared observatirin of the R and C machine
values on a series of predeternuned test points (generally the
outputs) to see whether the test pattern has covered some of
the simulated faults. This observation takes place in suitable
temporal windows (linked to the tester timing), called detection
windows. When a fault is detected c in t,he outputs, the simula-
tion of the corresponding C-machine is normally stopped. Fault
dropping is the mechanism which suspends the simulation of the
detected faults, so as to free memorp and considerably reduce the
number of traversals.

Fault detection and fault dropping are part of the more gen-
eral issue of observation and statistics. Machine behaviors must
be observed at test points and statistics such as size (number
of descriptors) and number of events for each machine must be
collected, so as to identify machines I>ehaving very differently
to the R-machine, and thus contradicting the assumption upon
which the concurrent simulation is based. The simulation time
of these machines may become very high (90)"o and more) and
dominate the entire simulation. Two types of these machines
exist: hyperactive and hypertrophic machines.

The former generally concern faults which affect critical con-
trol signals, causing oscillations. These faults generally represent
less than 5 % of the total. These machines are dropped, even if
they have not yet been detected at test points, as the correspond-
ing faults are catastrophic for circuit operation. An example of
this kind of fault is given in Fig. 1. The s-a-1 fault on the control
signal of latch L2 modifies the behavior of the circuit, allowing
the oscillation of the relative C-machine when CK holds the value
1.

The second type of machines concern faults that inhibit net-
work initialization, causing huge S machines. These machines
can only be potentially detected. A t,vpical example is t.he s-a-0
on the CK input of latch L l in Fig. I . It should be ncited that
this fault, will be detected bv anv i l l p i i t pat tern covering h t h
s-a-0 and s-a-1 faults on the output cnf L1 , altliriugh there is no
equivalence between t.hese faults.

A fault is marked as hyperactive and dropped when the num-
ber of events on the associated C-machine has heen t.ou high with
respect to the number of events on the R-machine iii a given in-
terval of time.

In the same way a hypertrophic fault is dropped when the size
of the related C-machine becomes comparable to that of the R-
machine and the fault is already marked as potentially detected.

6 Experimental results

We shall now present data from several experiments to support
the claim that the techniques described effectively improve the
efficiency of multilevel fault simulation.

Table 1 collects general information on the circuits and input
vectors used in the simulation test runs.

C6288a and C6288b are two versions of a 16 x 16 parallel
multiplier belonging to the set of benchmark circuits proposed
in [7]. In C6288a, 0-delay elements are used, whereas C6288b
is a unit-delay version. Their comparison shows the potential
advantages of LTP simulation. LSSD is a small circuit designed
according to the well-known testability methodology [SI. It has

Paper 42.2

Figure 1: Hyperactive and hyI>ertrophic faults

1,
simulation
t i le 50 ..

40

been simulated with and without circuit initialization to show
the impact of uninitialized faulty machines. GA is a gate array
circuit, BS is a bit sliced processor, and hTTJI,'r8a, hI1JLT8b, and
MULT8c are three successive refinements of a 8 x 8 multiplier.

Table 2 reports CPU times (measured on a DEC VAX 8650
running VMS) as a function of the numbers of C-machines simu-
lated. Data refer to the simulation of the R-machine alone (col-
umn R) and of various percentages of all possible C-machines
(after fault collapsing). Times for 25%, 50%, and 75% of the C-
machines were averaged over several independent random sam-
ples of faults.

In what follows T,, is the time fnr the simulation of the R-
machine alone for circuit a and T,,, that for the concurrent
simulation of all faults. The ratio ?!:: is written IC,

Data from Table 2, normalized with respect, to T,, are plotted
in Fig. 2, while Fig. 3 plots U,(t) , i.e. the fraction of undetected
faults as a function of t.he fraction of applied test vectors for
circuit a .

We interpret the plots in Fig. 2 with refrrence ti1 Fig. 3. If
we assume the immediate dropping of a fault upon detection, the
normalized mean life of a C-machine for circuit a is given by

In general, higher values of AI', lead to increased values of K,,
as one would obviously expect. This is the case for circuit GA,
which has the highest value for both AI, and IC,. There are, how-

30 _.

ever, circuits such as C6288a, C6288h, and LSSD2, which have
significantly different K , values in spite of t.heir similar Ma val-
ues. First of all, the high value of K ~ ~ ~ I L T ~ ~ is due to the present
absence of trigger inhibition at the swit.cli level. To understand

sider that the impact of fault detectioii and dropping time, which
is approximately the same in absolute terms, is greater in relative

20 the difference between the two versions of (:6288, one should con-

(5)
I i

/ /
' i

/ 1'
/ i

/ 1'
I /..'

/..
/ /.' ..

/ ./'
/ /

Q'

circuit

' LSSDl
LSSD2

MULT8a

R
6.33

153.42
136.05
68.93
68.82

231.01
0.37
0.98

41.80

25%
17.51

385.17
1109.62

92.98
271.26
261.13

0.45
1.71

311.52

RAMs

?

~. .

50%
37 47

573 28
2330 98

117 05
505 7 l
280 41

0 54
2 36

696 81 -

patterns faults

2250 9635
4386
252 224

56 1388
56 2498

~~ ~

75%
59.51

819 68
4571 99

140 61
694 31
316 68

0 63
3 12

931 24

_. _ _

._ .~

100% ___
83.99

1057.39
5844.46

169.04
899.11
395.27

0.72
3.85

1540.27

Table 2:
C-machines

Times (in seconds) as a function of the number of

Paper 42.2
695

u n d e t e c t e d
faults

MULTBA - M - 0.0489
ES - M - 0.1254

- - - - - LSSDl - M - 0. 1306

_ _ _ _ _ MULTEB - M - 0 . 1 5 7 9

_ _ _ _ _ LSSO2 - M - 0.2000
MULTBC - M - 0.2178

C6288 - M - 0 . 2 2 5 1

G I - M - 0 . 5 4 8 3

>
0 . 1 0 2 0.3 0 . 4 0 . 5 0 . 6 0.7 0 . E 0 9 1 . 0

p a t t e r n s

Figure 3: Coverage as a function o f apldie(l test vectors

whereas in LSSDZ they are not. As a consequence, large unini-
tialized C-machines develop in LSSD2, due t o faults on the clock
input lines of latches. These fault.s, n11 the other hand, cause
solid detection if the C-machines have been initialized prior to
fault injection. Their effects are amplified b v the small size of
the circuit, which prevents dropping of hypertrophic machines.

On circuits larger than LSSD, the speedup achieved by drop-
ping hypertrophic and hyperactive machines is often quite signifi-
cant and therefore difficult to quantify, sin& t l l ~ mere presence of
a few hyperactive faults can prevent a s imula t i t~n run from end-
ing in a reasonable time. For circuit G A , it has been established
that dropping hypertrophic and hyperactive machines (2.2% of
the total) accelerates simulation by a factor greater than 100.

M , also allows us, via a comparison with serial fault simula-
tion, to define a metric for fault simulation prrformance. Indeed,
if nf, is the total number of fatilts for rirciiit a , T,far then the

a
C6288a
C6288h
G A
LSSDl
LSSD2
BS
hlULT8a
h l U LT8 b
MULT8c

1 nl.
7741
77‘14
9635
939
939
224
61

1388
2498

M u
0.2251
0.2251
0.5483
0.1 306
0.2000
0.1261
0.04 U 8
0.1579
0 .2 I78

-
h,

13 27 1 3 1 I
6 U9 253 1

4206 1230
2 15 50 I
13 06 1 1 5
I i l l i l
1 9 5 2 1
3 93 56 0
3685 1 1 8

~-
s,

631 1
1314 8
229 6
647 6
77 9

315 5
67 4

437 7
69 7

Table 3: Serial vs (‘oncurrent S i m ~ l a t i n ~ ~

time for serial fault simulation (with fault dropping), is approxi-
mately given by

The speed gain of concurrrnt ovcr s r r ~ a l fallit 91mulatio11 is ex-
pressed by

Table 3 reports data derived from those of Table 1 and 2. Besides
G,, it reports the average speed of simulation of a C-machine,
relative to the speed of simulation of the R-machine as

s, = nfaTra (8)
Tcfa - Tm ’

S , is used in [4,6] as an indicator of the performance of concur-
rent fault simulation and is shown here to allow comparison with
previous work. We believe, however, that G, is a more accurate
indicator than S,. S, only accords concurrent fault simulation
the benefits of fault dropping. In spite of their importance, these
are neither specific to that approach, nor an integral part of it. If
we consider the results in [4] relative to circuit “Mult 0-del” (it is
C6288a with a longer test sequence), S, is extremely high (8036),
but the low value of G, (59) shows that most of the simulation
is carried out with very few faults active (M, = 0.0148).

Also, by considering only the time directly accountable to the
simulation of the faulty machines, S, tends to amplify t,he gains
of concurrent fault simulation when they are already high (i.e.,
T,, is close to T,f,), as in the case of C6288h and MULT8a.

slmulatlon
t 2 m e 900
5

800

7 0 0

600

500

400

300

200

100

,
/ , , ,

I
I

I

,
0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 B 0 . 9 1 . 0

p a t t e r n s

Figure 4: Simulation C P U times for exper~ments LSSDl and
LSSD2

Paper 42.2
696

We now consider the effect4 of Fraternal F,\r~it Processing and
List Events With reference to equations (1-3), l a b l e 4 reports
the values of E (F) measured on circiiits G h , CG288a, C6288b
and MULT8b and the values nf $${f!J

Table 4: Effiriencv of fraternal event prncessing

Equation 1 shows that , without FEF’, t lit. t imr spent for an
event occurring on a C-machine (with no simultaneous event for
the R-machine on the same list.) is biiiind t o increase roughly
linearly with E (L) . Alternatel,~, with FEP and List Events, it
varies as R; while not constant, this grnws at a much lower
rate then E (L) .

As far as event,s for the R-machine are concerned, thcir costs
are proportional to the length of machine lists. Finally, events
for C-machines that occur a t the same timr as events for the
R-machine on the same list require no additivnal overhead for
collecting and traversinglists. Their c r x t is therefore independent
of n and very low. lf the nurnher of C-machines is varied as in
Fig. 2, then the number of events processed per serond decreases
as more faults are simulated. T h e is then an optimum value
of faults that maximize simulation speed. However, with FEP
this optimum value often falls near to or even beyond n f a . If
this is not the case, dividing faults in lots and processing them
in several passes saves simulation time.

A comparison of data for the two experiments on circuit
(36288 (see Table 2) shows the efficiency of Ievrlized simulation.
The example is particularly favnrablc t c LTF’ simulation for two
reasons: all elements in C6288a have 0 di,lay and the logical depth
of the circuit is very high Both factnrs determinc how far useless
events can propagate before thev arr slapprd I I V either primary
outputs or elements with noIi-zero delays

Lastly, we consider thr advantages ol inullilrvel simulation.
A comparison of MlJLT8a, hlULTRb, and RlULT8c shows the
reduction in CPIJ time oht,ained hy resorting t i l more abstract
descriptions of the circuit. However, rrne shriiild alsn notice the
reduced significance of fault roverage eslahlislicd at gate, and RT
levels with respect to that tiblainrd w i t h a faithful structural
description

7 Conclusions

In this paper, the prinriples of miiltilrvel fniilt simulation have
been discussed and the algorithms adirptcd in hlUZART fnr their
efficient implementation have been prrsrntrd. The emphasis in
those techniques is on the rethirt inn nf t h e number of traversed
items in concurrent niarliine lists and t lie avoidance uf iinneces-
sary evaluations and cvents. Tlir irripnct citi simulation perfor-
mance has been studied both analytically ancl rxperinientally. A
new and more accurate metric cif fault siniiilation performance
has been introduced. The scattering of valiies reported in sec-
tion 6 shows the need for a large set r i f significant benchmarks.
Considerable work is still required i r i this tlirrctiim to permit the
meaningful comparison (if prrigrarns and algririthrris. However,
the same results show that hvlO%Alt‘T is adequatr f i x the fault

simulation of the custom and ASIC IC’s for which it is currently
employed.

It has been seen that hyperactive and hypertrophic faults
adversely impact fault simulation speed. Their identification
and removal is therefore mandatory. The way this is done in
MOZART is reasonably efficient and can be improved in two
ways: earlier detection of oscillating machines; non-simulation of
faulty machines, such as the one discussed in section 5, to which
the two following conditions apply:

their simulation could not predict more than possible de-
tection.

their detection can be inferred from that of other non-
equivalent faults.

Potential savings exceed 50% of the simulation time on sequential
circuits.

References

[l] R.E. Bryant, “A Switch-Level Model and Simulator for MOS
Digital Systems,” IEEE Trans. on Computers, Vol. C-33,
No. 2, Feb. 1984, pp. 160-177.

[2] S. Gai, F. Somenzi, M. Spalla, “Fast and Coherent Simu-
lation with Zero Delay Elements,” IEEE Transactions on
CAD/ICAS, Vol. CAD-6, no. 1, January 1987, pp. 85-92.

[3] E. Ulrich, “Concurrent Simulation at the Switch, Gate
and Register Levels,” Proc. International Test Conference,
Philadelphia (PA), November 1985.

[4] S.Gai, F.Somenzi, and E.Ulrirh, “Advanced Techniques for
Concurrent Multilevel Simulation,” Proc. IEEE Int. Conf.
on CAD, Santa Clara, CA, Nov. 1986, pp. 334-337.

[5] M. Abramovici, M.A. Breuer, K. Kumar, “Concurrent Fault
Simulation and Functional Level Modeling,” Proc. 14th De-
sign Automation Conference, June 1977, pp. 128-137.

[6] C.Lo, H.N.Nham, and A.K.Bose, “Algorithms for an Ad-
vanced Fault Simulation System in MOTIS,” IEEE Trans.
on CAD/ICAS, Vol. CAD-6, March 1987, pp. 232-240.

[7] F. Brglez, H. Fujiwara, “A neutral netlist of 10 combina-
tional benchmark circuits and a target translator in fortran,”
special session on ATPG and fault simulation, Proc. 1985
JEEE Int. Symp. Circuits and Systems, Kyoto, Japan, June
5-7, 1985.

[8] E.B.Eichelberger and T.W.Williams, “A Logic Design Struc-
ture for LSI Testability,” Proc. 14th Design Automation
Conference, June 1977, pp. 462-468.

Paper 42.2
697

