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Abs t rac t  

In this paper, we present several powerful techniques which 
allow us to generate efficiently channel routing solutions which are 
beneficial to  further compaction. Our techniques can be applied to 
straight track compaction as well as to contour routing compaction, 
and produce very encouraging results. In particular, for Deutsch’s 
DXicult Example, we obtained a straight track routing solution 
whose area is 7% less than the best known result after straight track 
compaction. Also, our router generated a routing solution using less 
area than reported results of all well known routers after contour 
routing compaction. 

1. Introduct ion 

In VLSI layout design, a significant portion of chip area is 
used for channel routing. There are several grid-based channel 
routers which can consistently produce channel routing solutions 
which are a t  most one or two tracks within optimal solutions pe76, 
YoKu82, RiFi82, BuF’e83, ReSS851. A further study pe85] showed 
that the routing solutions of these grid-based router could be com- 
pacted to obtain a 15% - 20% area reduction. Both straight track 
compaction pe85, WoLi86, Ch86] and contour routing compaction 
[De85, XiKu87, Ro87] have been investigated. From the experimen- 
tal results of dierent  channel compactors, it was observed that the 
amount of area reduction is closely related to the grid-based routing 
solutions we used. For example, as reported in pe85], the same con- 
tour channel compaction algorithm was applied to three optimal 
19-track grid-based routing solution of Deutsch’s Difficult Example. 
Three different results were obtained. Since all grid-based channel 
routers were designed to minimize the number of tracks used and do 
not take the later compaction step into account, it becomes an 
important problem for channel routing compaction, as raised in 
[De851 and m u 8 7 ] ,  to obtain more compactable channel routing 
solutions. In this paper, we shall present several efficient techniques 
which allow us to transform grid-based channel routing solution sys- 
tematically into more compactable routing solutions. 

Usually, contour routing compaction may yield more area 
reduction than straight track compaction. This further reduction on 
area might be quite helpful in the situation where a small overflow of 
a channel may cause redesign of the whole layout. However, there 
are several potential problems with contour routing compaction. 
First, it makes the routing geometry much more complicated. Also, 
in the compacted routing solution we may have long wire paths with 
only minimum separation, which may lead to a poor yield. On the 
other hand, straight track compaction can give satisfactory area 
reduction in most of the cases, and the final compacted routing solu- 
tions have much simpler routing geometry. In many chip produc- 
tions, straight tracks are used for routing implementation. Thus, a 
practical channel routing compactor should be able to perform either 
strsight track compaction or contour routing compaction. In this 
paper, we show how to generate more compactable routing solutions 

either for straight track compaction or for contour routing compac- 
tion. In general, the methods presented in this paper can be used 88 

a preprocessing step of channel compaction. 

2. Formulat ion of t h e  Problem 

Let S and S‘ be two grid-based channel routing solutions for 
the same channel routing problem. We say that S’ is more compact- 
able than S if S’ uses less routing area than S after channel compac- 
tion. In grid-based channel routing, we usually assume that there is 
a grid structure superimposed on the routing area and wires and vias 
are dimensionless. A typical grid-based routing solution is shown in 
Fig. 2-1. When we come to channel compaction, we are no longer 
restricted to  the grid structure, and we must also take the dimension 
of wires and vias into account. Given a grid-based routing solution 
S, if we require all the wires on the same track in S remains on the 
same straight track after compaction, as shown in Fig. 2-2, we call 
the compaction atraight track compaction. If we allow wires in S to 
bend arbitrarily (but still complying with design rules) in the com- 
pacted solution, as shown in Fig. 2-3, we call the compaction con- 
tour track Compaction. We want to obtain grid-based channel rout- 
ing solutions such that after straight track compaction or contour 
routing compaction, minimum routing area is used. 
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Fig. 2-1 An Example of Two Layer Channel Routing Solution 
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Fig. 2-2 Straight Track Compaction 

Fig. 2-3 Contour Routing Compaction 
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We use the same set of design rules as presented in [De85]: 

path width 1.0 
feature separation 1.0 
sire of via 
terminal spacing 4.0 

2.0 x 2.0 

It makes comparisons with other compaction results easier by using 
the same set of design rules. The methods presented in this paper 
are design rule independent. 

In the rest of the paper, we aasume that there are two layers 
available for channel routing. One layer is reserved to horisontal 
wires and the other layer is reserved to vertical wires. A via is used 
to  connect wires on dierent  layers. Two vias are adjacent if they 
are in the same column on two adjacent tracks and the two vias 
belong to two different nets. We define the height of a channel to be 
the distance from the bottom edge of the channel to  the top edge of 
the channel. 

8. S t r a igh t  Track Compact ion 

Straight track compaction is usually achieved by allowing 
variable track spacing and via offset. If we use uniform track spac- 
ing, since there may be two adjacent vias between two tracks, the 
track spacing should be 3.0 (Fig. 3-1 (a)). However, if we allow vari- 
able track spacing, when there is no adjacent vias between the two 
tracks, we may reduce the track spacing between these two tracks to 
2.5 (Fig. 3-1 (b)). Furthermore, if we allow via offset, for example, 
shifted by 0.1 as in pe85], we may reduce the track spacing between 
two tracks to 2.8 even if adjacent vias exist between these two tracks 
(Fig. 3-1 (c)). Clearly, existence of adjacent vias in the grid-based 
routing solution affects both the channel height and routing 
geometry after straight track compaction. We call two adjacent 
tracks with adjacent vias between them a conflicting track pair. It is 
easy to show that for a grid-based routing solution without 
conflicting track pair, straight track compaction will give a routing 
solution with minimum channel height using uniform track spacing 
and without via offset (a much simpler routing geometry!). Thus, 
the key problem for generating more compactable routing solution 
for straight track compaction is to minimize the number of 
conflicting track pairs. 

,-, 
Fig 3-1 Variable Track Spacing and Via Offset 

We introduce two powerful and efficient techniques to  
transform a grid-baaed routing solution into another solution with 
the minimum number of conflicting track pairs. One technique is 
track permutation. For the example shown in Fig. 2-1, there are 4 
conflicting track pairs. If we exchange track 2 and 3, we obtain a 
routing solution with only 2 conflicting track pairs (Fig. 3-2) 
Another technique we use is local re-routing. For the routing soh-  
tion we obtained in Fig. 3-2, if we reroute net 4 at column 8 and 9, 
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Fig. 3-2 After Exchanging Track 2 and 3 in Fig. 2-1. 
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Fig. 3-3 The Solution in Fig. 3-2 after Rerouting. 
we can remove adjacent vias between track 5 and 6. Thus, we 
obtain a routing solution with only one conflicting track pair (Fig. 

8.1. Track Permuta t ion  
3-3). 

We observe that not every track permutation on a routing 
solution will yield another valid routing solution (i.e. a solution 
without horirontal and vertical overlap of wires from different nets). 
To characterize valid track permutations, we define the track order- 
ing graph G ( S )  of a two layer grid-based routing solution s. G ( S )  
is a directed acyclic graph. Each node in G ( S )  represents a track in 
S. There is a direct edge from t i  to t i  if at  some column, there is a 
via on ti above a via of another net on t i .  Fig. 3 - 4  shows the track 
ordering graph of the routing example in Fig. 2-1. We can prove 
that for a two layer routing solution S without unrestricted dogleg, 
every valid track permutation corresponds to a topological labeling 
of G ( S )  [Co87]. The crucial problem left is to obtain a valid track 
permutation r such that the number of conflicting track pairs in 
r ( S )  is miniimbed for a given S, where r ( S )  denotes the two layer 
solution obtained by permuting the tracks in S according to r. We 
can show that the problem of finding an optimal track permutation 
of a given routing solution S is equivalent to the Separation Prob- 
lem for directed acyclic graphs, which is formulated as follows 
[LeVW84]: 

Inpu t :  A given directed acyclic graph G.  

Question: Find a topological labeling of G that minimiles 
the total number of edges between vertices with consecutive labels. 

Fig, 3-4 The Track Ordering Graph of the Example in Fig. 2-1 

We leave out the proof for equivalence of the two problems. 
A linear time algorithm for the Separation Problem was presented in 
[woLi86]. By using that algorithm, we can obtain the optimal track 
permutation in linear time. 

8.2. Local R e r o u t i n g  

Local re-routing is performed after we permute the tracks of 
the channel routing solution according to the optimal track permuta- 
tion. By rerouting some nets locally, we can remove some adjacent 
vias, and, thus, further reduce the number of conflicting track pairs. 
This task is accomplished by using a male router, which works as 
follows: For the partial routing solution in Fig. 3-4 (a), we remove 
via u1 (Fig. 3-4 (b)) and try to connect the portion of the net con- 
taining z with the portion of the net containing the horizontal seg- 
ment h ,  (Fig. 3-4 (c)). We try to remove via u2 in a similar way if 
the removal of via u1 fails. Our mare router is based on the classical 
wave propagation algorithm of Lee &eel]. 
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6"' . Fig. 3-5 Local erouting 

In our mase router, we sometimes allow a short vertical wire 
to be put on the horizontal layer, or a short horizontal wire to be 
put on the vertical layer. Also, when the original routing solution is 
very crowded, local re-routing may not be very effective to remove 
adjacent vias. In this case, we might want to  insert an empty track 
a t  the most crowded area. Using the empty track for local re- 
routing again, we might be able to reduce the number of conflicting 
track pairs significantly. Thus, the compacted channel height may 
decrease. Our maze router is intelligent enough to decide whether an 
empty track should be inserted based on whether the final compacted 
channel height will decrease. 

4. Contour  Routing Compact ion 

Contour routing compaction is usually done by processing 
tracks one by one from the bottom of the channel to the top of the 
channel For each track, we assign wires and vias on the track to the 
lowest possible vertical position. Since we do not have to keep dis- 
tance between two tracks equal, adjacent vias are no longer the criti- 
cal consideration. HoGever, the phenomenon shown in Fig. 4-1, 
referred to as "bump propagation" in pes51 may affect the final 
compacted result. A via on a track near the bottom of the channel 
may cause adjacent tracks to  jog around it and propagate all the 
way up to  the top. Thus, we want to find routing solutions such 
that the number of vias on the tracks near the bottom of the channel 
is minimieed. Again, track permutation and local re-routing turn 
out to be powerful tools to transform standard grid-based routing 
solutions into the solutions of this kind. 

Fig. 4-1 Bump Propagation 

4.1. Track Permuta t ion  

Assume vi is the number of vias on track ti. Let ti be the 
i-th track from the top. Then the propagation length caused by all 
the vias on ti can be estimated by i 'vi, because i measure the dis- 
tance from track ti to the top of the channel. Thus, we want to 

find a valid track permutation ?F such that .(;).vi is minimized, 

where r(i) is the position of track ti from the top of the channel 
after permutation z is performed. Again, valid track permutations 
can be characterised by topological labelings on the track ordering 
graph, as defined in the last section. And we can reduce the prob- 
lem of finding an optimal track permutation to the following single 
machine job sequencing problem: 

n 

i =1 

I n p u t  n jobs of unit execution time with precedence con- 
straints imposed by a given directed acyclic graph to be processed by 
a single machine. Each job ti has a weight wi (i = 1, 2 , ,  . . . , n). 

Question Find a feasible sequence such that the weighted 

wiCi  is minimieed, where Ci is the completion 
n 

completion time 

time of job ti. 

This sequencing problem has been proved to  be NP-complete 
[La78]. However, we can show that in our case for most of the prob- 
lems, the number tasks is small (5 40), and usually the number of 
feasible sequencing solutions are quite limited. Thus, branch and 

i =1 

bound algorithm can obtain the optimal result quickly. Also, 
Sidney's decomposition theorem [Si751 can be used to  find the 
optimal solution. 
4.2. Lour1 Re-routing 

In this step, we try to re-route some of the nets to remove 
unnecessary vias by a maze router. This will help to  minimise the 
final compacted channel height, since each via will cause 'bump pro- 
pagation'. Since we do not want to introduce new vias when we do 
re-routing, our male router does not switch layers. Aha, since 
removal of some of the vias may block the removal of other vias, 
and we want to minimise the number of vias at the bottom of a 
channel as much as possible because of 'bump propagation', our 
maze router try to  remove vias from the bottom of the channel to 
the top of the channel. We use a similar wave propagation algo- 
rithm as presented in the last section to implement our mase router. 
Local re-routing is performed after the tracks the channel routing 
solution is permuted according to  the optimal track permutation. 

6. Experimental  Results 

We implemented our algorithms for generating more com- 
pactable routing solutions both for straight track compaction and 
for contour routing compaction respectively. Our programs are 
written in Pascal language running under Unk 4.3BSD on a 
Pyramid machine. Table 5-1 shows the routing solutions we 
obtained for straight track compaction. YK3a, YK3b and YK3c are 
examples 3a, 3b and 3c, respectively in Yoshimura and Kuh's paper 
poKu82]. D1, D2 and D3 are from the GTE Layout published in 
pe76]. D 8  is the famous Deutsch's Difficult Example. Our router 
removed all the adjacent vias without inserting empty tracks for all 
the examples except Deutsch's Difficult Example. Thus, after 
straight track compaction, we achieved the minimum channel height 
using uniform spacing. For Deutsch's Difficult Example, we 
obtained two routing solutions. Both have a smaller channel height 
than the best reported result (of height 54.6 pe851) based on the 
same set of design rules after straight track compaction. The first 
one has 4 conflicting track pairs, and its channel height is 7% 
smaller than the best reported result after straight track compaction 
with variable spacing and via offset. The second one resolved all the 
conflicting track pairs by inserting an empty track (Fig. 5-1). It has 
a slightly larger channel height but can be implemented by uniform 
spacing after straight compaction. It is the first 20 track solution 
without adjacent vias for Deutsch's Difficult Example ever reported. 
Running time of our program for straight track compaction on all 
the tested examples is less than 50 cpu seconds. 

Table 5-1 Experimental Results for Straight Track Compaction. 

Table 5-2 shows the routing result of Deutsch's Difficult 
Example we obtained for contour routing compaction and comparis- 
ons with other results. Our router generated a 19-track grid-based 
solution, which yields a smaller channel height than all the reported 
results of well known routers after contour routing compaction. Our 
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result is the same as the result reported in Pe8.51. The result in 
[De851 was baaed on a partially hand edited 19-track solution, com- 
pacted from column 60 to 100. Running time of our program for 
contour channel routing is less than 12 cup minutes on all the tested 
examples. 

Table 5-2 Compariaons of Contour Routing Compaction on 
Deutsch’s Difficult Example 

6. Remarks  and Concluaions 

In this paper, we showed how to generate channel routing 
solutions which are beneficial to later compaction. The basic idea is 
to do solution transformation based on routing solutions produced 
by good channel routers. Compaction results based on our solution 
have not only a smaller channel height but also a simpler routing 
geometry. Running time for our algorithms is quite short, thus, our 
program can be used efficiently as a pre-processing step of channel 
routing compaction to improve compaction results greatly. To the 
authors’ knowledge, this is the first paper explicitly addressing the 
problem of generating more compactable solutions, although the 
same problem was raised a few times in literatures [De85, XiKu871. 
We would like to see more reserach along this line. 
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