
A Graph Compaction Approach to Fault Simulation. 

Dov Hare1 
Balakrishnan Krishnamurthy 

Tektronix Laboratories 
Tektronix, Inc. 

Beaverton, Oregon 91011 

Abstract: We describe a graph compaction based algorithm for fault 
simulation in combinational circuits. The algorithm consists of 
reducing the circuit graph by repeatedly removing non-reconvergent 
vertices. The algorithm have been implemented in Smalltalk and 
preliminary experimental results are presented. A version of the 
algorithm outperfoms all known fault simulation algorithms on a 
family of hard circuits. 
1. Introduction 

It is well known that the major obstacle for fast fault simula- 
tion is reconvergence in the underlying circuit graph. In fact it was 
shown [7] that fault simulation is at least as hard as matrix multipli- 
cation and related problems for which there are no known linear 
time algorithms. In view of these facts, it would be interesting to 
lind algorithms whose execution time is inversely proportional to 
the amount of nested reconvergence in the circuit. The hope is that 
analysis of the topology of the circuit may be helpful in attaining 
such a goal. Certain steps in this direction were taken in [ l ,  121 and 
more recently improved by [3]. Subsequently more general 
approaches utilizing dominators in Row graphs [lo], stem regions 
and dominating sets [13,6] were proposed. 

This paper presents a radically different approach to solving 
the problem which we call graph compaction. The new approach, 
coupled with some of the above results, leads to improved algo- 
rithms in many situations. A complete analysis of the performance 
of a variant of this algorithm in the case of bounded degree series 
parallel graphs and matrix multiplication decoders is beyond the 
scope of this paper and can be found in [9]. 

In this paper we concentrate on the following problem. Given 
a combinational circuit C and a test vector, find for each gate g 
(logical gate or a fanout stem) the set of all primary outputs of C at 
which the stuck-at fault at the gate will be detected. We call this set 
the detection set of g . The reader is cautioned that the above prob- 
lem is different from what is usually referred to as fault simulation. 
Detection set computation is closely related to single vector fault 
simulation, and in fact subsumes it. 

We note that fault simulation is closely related to data flow 
analysis problems which arise in the context of code optimization 
[2] and most known fault simulation algorithms have a counterpart 
in that domain. The graph compaction algorithm presented here is 
reminiscent of the Hecht and Ullman graph transformation based 
Row graph manipulation algorithms in code optimization [ I  11. 

The ideas in this paper shed some light on the reconvergence 
structure of directed acyclic graphs and its relationship to fault 
simulation. In particular a version of the algorithm [9] outperforms 
all previously published algorithms on the matrix multiplication 
decoders of [7]. 

In section 2 the basic algorithms are presented informally. 
Section 3 contains pseudo code for a version of the algorithm and 

briefly discusses reconvergence precomputation. Section 4 contains 
an application for built in self test (BIST) and section 5 contains 
preliminary experimental results of a Smalltalk implementation. 

2. Graph Transformations 

The algorithm is motivated by the following observation: 
Given the detection sets for all the reconvergent stems in a combi- 
national circuit, one can compute the detection sets everywhere in a 
linear time backwards walk of the circuit. We therefore concentrate 
on the reconvergent stems and gates by deleting all 
non-reconvergent vertices from the circuit. After that phase some 
previously reconvergent vertices might not reconverge any more 
(see example in Figure 1). If so, the previous process can be 
repeated. A more precise exposition follows. 

Let G be a dug (directed acyclic graph); G* denotes the transi- 
tive closure of G . We call a vertex v in G forward reconvergent if 
v has two immediate successors x # y , x and y reach a common ver- 
tex U in G. We call a vertex v in G backward reconvergent if v has 
two predecessors x # y , x and y reached by a common vertex U in 
G . Finally v is a reconvergent vertex of G if v is either a forward 
or a backward reconvergent vertex of G .  

Let G = G o  be a dag corresponding to a combinational circuit. 
Given a test vector x we define a sequence G I G 2 , .  . . .Gk of sub- 
graphs of G * ,  G, = ( V , ,  E , )  as follows. Define V I  to be the set of 
reconvergent vertices of Go. and El  = [ ( x . y  ) I x ,  y E V ,  and there 
is a sensitized path x = x,,. xl, . . . , x, = y in G o  such that the effects 
of a single stuck-at fault at the output of x propagate through the 
path to the respective inputs of y , and such that for 0 < i < n , xi is 
not reconvergent in G o  1. In other words, G I  is obtained from Go by 
removing the non-reconvergent vertices of Go, and adding in edges 
which designate single path sensitization in Go. In this case the 
effect of a single fault can effect at most one input of the target gate, 
since all the intermediate vertices on the propagation path are 
non-reconvergent. 

Note that a vertex might be forward (backward) reconvergent 
in Go and not in G , .  Thus it is entirely possible that G I  funher 
reduces to Gal and so on. We do not consider multiple edges in G I  
in the sense that if there are paths from a node x to different inputs 
of a node y , they are considered to constitute a single edge, although 
the effect of the edge is registered with the respective input slots of 
y .  In general a node x in G I  (G,) carries with it in addition to the 
logical values of its input slots, the set of inputs which have 
changed due to effects propagating through predecessors that by 
now have been removed from the graph. An edge in G is assumed 
to carry all single fault effects propagating from its tail to its head. 

is obtained from Gi in the same way E l  is 
obtained from G o  as follows. V,+ ,  is all non-reconvergent vertices of 
Vi, and Ei+l = [ ( x ,  y ) I x , y  E V,+l and there is a path from x toy in 
Gi such that for every node z on the path (except for the endpoints), 

In general 

25th ACM/IEEE Design Automation Conference@ 

CH2540-3/88/0000/0601$01 .OO 0 1988 IEEE 
Paper 38.6 

60 1 



z is non-reconvergent and the fault effect at x propagates through 
z ) .  Henceforlh we will refer to the above graph compaction pro- 
cedure as algorithm A. Figure 1 contains a detailed example of 
executing algorithm A on a simple circuit. 

1 

0 
I 

l o  1 

I 

a. A circuit and a test vector aher logical simulation. 

0 0  

1 0  

0 0  

0 0  

l o  
1 0  

0 0  

0 0  

b. After the first iteration in algorithm A all non-reconvergent 
gates and stems are removed (shown here isolated). Solid 
lines represent fault propagating (sensitized) paths through 
non-reconvergent nodes of the circuit, dashed l i e s  represent 
non-propagating such paths. Note that although there are 
paths from stem a to respective inputs of gates e and f ,  both 
paths go through an immediate successor of (I which is an 
AND gate with a negative (0) output value, and thus the (I 
stuck-at-1 fault docs not propagate beyond that successor. 

01 

0 0  

c. The intermediate graph arter the first iteration of algorithm A. 
Note that isolated venices and dashcd edges were removed 
from the previous diagram. 

d. 

Figure 1. Execution of algorithm A on a simple circuit. 

The intermediate graph after the second (and next to last) 
iteration of algorithm A. 

Note that it is possible that Gi+l =Gi and Gi may or may not be 
the empty graph 0. If at some point i in the sequence of reductions 
we have Gi+l =Cia we say that the original graph G is irreducible 
under the given test vector. In such situations we could use a varia- 
tion of any known fault simulation algorithms to compute detecta- 
bility in Gi, and then in linear time complete the computation for 
the original circuit G . An alternative approach which we will call 
algorithm A1 is outlined below. 

While computing Gi+l from Gi we restrict our attention to 
paths in Ci all whose internal nodes are non-reconvergent in Gi .  
The intuitive reason is that if there are multiple paths from the head 
of the path into some gate g on the path, then it may seem as if the 
effect propagates through g while in fact it will not propagate 
through g due to multiple path desensitization. This can not hap- 
pen, however, if g is a fanout stem and so one can propagate a fault 
through a fanout stem whether or not it is reconvergent! In other 
words, one can allow forward reconvergent nodes on the path from 
x to y in the definition of 

More precisely. we modify the definition, computing the 
sequence G =G‘oG‘l ... G;, V,+l is the set of non-reconvergent 
vertices in V i ,  and = [ ( x ,  y ) I X ,  y E V,+l and there is a path 
from x to y in Gi such that for every node z on the path (except for 
the endpoints), z is not backward-reconvergent and the fault effect 
at x propagates through z 1. For the new sequence we can prove that 
the original graph G will always collapses. That is, as long as Gi is 
not empty, Gi # G’i+l. In fact we can show that the reduction chain 
G =Go C1 . . . G; terminates, and its length is bounded by the 
depth of the circuit. This follows from the following lemma whose 
proof is omitted from this version. 

Lemma 1: The depth of Gi+, is at least one smaller than that of G’, . 

3. The Algorithm 

An outline of algorithm A1 is given below. The procedure 
propagateFonvard below computes Gi+, from Gi.  The procedure 
graphCompaction repeatedly calls propagateFonvard until either 
the current graph is empty or there is no change. Finally 
compute-detection-sets movers the detection sets of g from the 
detection sets of its successors in drop&) in a single backwards 
walk (in topological order) of the graph. Recall that 8’s successors 
at the time g dropped out of Gi .  

Note that an implementation of algorithm A can easily be 
obtained from the above pseudo code as follows. In the procedure 
propagateForward do not treat fanout stems of the original circuit 
as a special case (i.e. replace the condition i f s  is a backward recon- 
vergent node of Gi then by if s is a reconvergent node of Gi then). 
In addition it is now necessary to check in graphCompaction for the 
case that the graph is not reducible that is: Gi = Gi+l # 0, in which 
case it is necessary to perform fault simulation on the irreducible 
graph (with respect to the test vector) Gi before applying 
compute-detection-sets. 

We have programmed several variations of the graph compac- 
tion algorithm. Some of the variations allow different kinds of 
intermediate vertices on the paths represented by edges in the com- 
pacted graph. Some take into consideration independent propaga- 
tion through some gates [4]. By far the most effective speed-up was 
gained by avoiding recomputation of reconvergence by 
preprocessing the graph as follows. Perform a preprocessing com- 
paction of the graph making worst case assumptions about fault pro- 
pagation through gates, that is: whenever a fault effect may pro- 
pagate through a gate we assume that it does. The variation hence 
referred to as algorithm B performs this precomputation and 

Paper 38.6 
602 



procedure propagateForward(i, V) 
"backwards walk of Gi modify edges creating Gi+l" 

for j := lVil d o w n t o l d o  
g := the j-th topological order gate of Gi 
if g is a non-reconvergent node of Gi then 

copy the successor set of g into the set drop(g); 
add g to Vi+l; fi 

new-successors := the empty set; 
for each successors of g do 

i f s  is a backward reconvergent node of Gi then 

else if effect propagates from g through s then 

add a copy o f t  (including effects 

add s to new-successors; 

for each successor t of s do 

on t's input) to new-successors; 
od fi fi 

od od 
v := vi+i; 

end [propagateForward) 

procedure graphCompaction 
"compact the graph, return number of iterations" 

i := 1; V' := V; 
while V' is not empty do 

propagateForward(i, V'); 
comp forward-reconvergence(Gi); 
comp-backward-reconvergence(G, ); 
i := i+l; od 

compute-detection-sets; 
return i; 

end [ graphCompaction] 

procedure compute-detection-sets 
fo r i  := n down to 1 do 

v := the i-th vertex in topological order, 
detection-set(v) := union [ detection-set(u) I U in drop@) 

and the fault effect at v propagates through U 1; 
od 
end [ compute-detection-sets) 

remembers the reconvergence values computed during each itera- 
tion. The graph in Figure 1.b is the result of the first iteration of the 
preprocessing phase on the circuit of Figure 1.a. Here all lines 
(dashed and solid) are the edges of the graph. Note that this graph is 
independent of the chosen test vector. The result of the second and 
third iterations are given in Figure 2. 

It can be shown that it is safe to use these precomputed recon- 
vergence values in the test vector dependent computation. Another 
variation which gave a slight improvement, and henceforth will be 
referred to as algorithm B1, also records which vertices during the 
backwards walk of the graphs could be ignored since all their 
immediate successors were backward reconvergent during a particu- 
lar iteration. Experimental results obtained by execution of algo- 
rithms B and B 1 on the benchmark circuits of [5 ]  are given in table 
2. 

4. Application for Built-In Self Testing 

The graph compaction approach is particularly attractive in 
situations where it is desirable to compute the detection set of faults, 
rather than just whether or not a single stuck-fault is detectable. 
One example of such a situation occurs is when creating fault dic- 
tionaries. Another application is for built-in self testing. Assume 
we have some random number generator, typically an LFSR, imple- 

a. The intermediate graph after the second preprocessing itera- 
tion of algorithm B on the circuit of Figure 1.a. The inter- 
mediate graph after the first preprocessing iteration is given in 
Figure 1.b. 

b < F T  

b. The intermediate graph arter the third preprocessing iterauon 
of algorithm B on the circuit of Figure La. The inmmcdiate 
graph after the fourth iteration is idendcal to the graph of Fig- 
ure 1.d. 

Figure 2. Execution of the preprocessing phase of algorithm B on a 
simple circuit. 

mented on the same chip to facilitate self testing of the chip. Each 
random input vector is plugged as input into the circuit under test, 
and the output vector is "mixed into" a signature producer, typically 
an LFSR again. The usual way a BIST scheme like the one 
described above works is by feeding a single many test vectors pro- 
duced in succession by the input LFSR. The signature thus obtained 
consists of as many bits as there are primary outputs. 

Computation of the fault coverage of the above scheme, and 
even its estimation is hard in general. One way to compute the cov- 
erage exactly is to compute the detection set of every fault at every 
phase, eventually producing a signature for every single stuck at 
fault. Note that our method has advantages in this case for the fol- 
lowing two reasons. First, it computes the detection sets rather than 
just detecting faults. In addition, it takes advantage of the topology 
of the circuit rather than utilizing fault dropping which is not per- 
missible under the above model. Finally, the large number of test 
vectors simulated seems to warrant the extra cost in the complexity 
of the algorithm. 

5. Experimental Results 

We have implemented a prototype of the algorithms described 
above in Smalltalk 80 on a Tektronix 4406 work station. We have 
also implemented single fault propagation algorithms not using 
dominators [lo] in the same environment. The most effective algo- 
rithms we tested were algorithms B and B1 which precompute 
reconvergence. A table comparing execution times of the algo- 
rithms appears in the complete version of the paper (see [SI) and is 
omitted from this version. That table indicates that algorithm B1 
outperfoms single fault propagation by a factor ranging from 1.5 to 
3.2. However, since similar speed-up of single fault propagation is 
possible using dominators and other techniques [3,10]. these results 
are inconclusive. 

Table 2 below gives the number of iterations required to col- 
lapse the circuits, as well as statistics on the sizes of the first two 
graphs collapsed (and their relevant subsets), and the total sizes of 
all subgraphs over all iterations. The things to notice are the rela- 
tive low number of iterations and the dramatic drop in the number 
of vertices after the first iteration. This suggests that the first itera- 
tion alone might be useful in practice for any fault simulation algo- 
rithm. That is the algorithm would be employed on the graph 

. 

Paper 38.6 
603 



obtained by the first iteration of algorithm B, and then the results for 
the original graph can be recovered in linear time. 

c499 
c880 
c1355 
cl908 
c2670 

1 Circuit Sizes 

41 32 499 261 
60 26 880 508 
41 32 1355 805 
33 25 1908 1265 

157 64 2594 1647 

Circuit K Size V1 El V2 
alu181 7 total 231 323 125 

actual 208 297 45 
c432 11 total 292 432 174 

Table 1. Sizes of benchmark circuits. Here I and 0 represent 
the number of primary inputs and outpuls of the circuit respec- 
tively, while V and E represent the numbers of vertices (gates 
and fanout stems) and edges (leads) respectively. 

E2 total V total-E 
347 799 2834 
100 660 2501 
886 1678 13615 

c5315 25 total 3414 5315 1438 4104 1 4 W  
actual 2962 4776 515 1862 8699 

c7552 26 total 5125 7551 2788 8404 29731 
actual 4017 6189 383 2466 16755 

102830 
93199 

243142 
218108 

6. Conclusion 

We have presented a single vector fault detection algorithm 
based on graph compaction. A variation of the algorithm collapses 
a circuit graph in a test vector independent way. The importance of 
the algorithm is in identifying some subtle properties of circuit 
graphs which makes them more or less amenable to efficient fault 
simulation. For example we were able to show that a version of the 
algorithm coupled with stem regions [ 13.61 reduces the time com- 
plexity of both hard [7] and easy (bounded degree series parallel) 
circuits. 

In addition table 2 shows that the first iteration is particularly 
effective in reducing the size of the simulated circuit that it may 
well be worth considering as a preprocessing stem in other fault 
simulation methods. 

Acknowledgement 

The authors wish to thank Mark Friedman for enlightning dis- 
cussions concerning the material in this paper and for carefully 
reviewing a previous version of the paper. 

References 

1. 

2. 

3. 

4. 

5. 

6.  

7. 

8. 

9. 

10. 

11. 

12. 

13. 

Abramovici, M. , Menon, P.R., and Miller, D.T., “Critical 
Path Tracing - An Alternative to Fault Simulation,’’ in 
Proceedings of the 20th Design Automation Conference , pp. 

Aho, A.V.. Sethi, R., and Ullman, J.D., Compilers - Princi- 
ples, Techniques, and Took, Addison Wesley, Reading Mas- 
sachusetts, 1986. 

Antreich, K.J. and Schulz, M.H., “Fast Fault Simulation in 
Combinational Circuits,” in Proceedings of the International 
Conference on Comp. Aided Design, pp. 330-334.1986. 

Bhattacharya, B.B. and Seth, S.C., Fault Simulation in Combi- 
national Circuits, unpublished manuscript, 1986. 

Brglez, F. and Fujiwara, H., “A Neutral Netlist of 10 Combi- 
national Benchmark Circuits and a Target Translator in For- 
tran,,” in Proc. of IEEE Int. Symp. on Circuits and Systems, 
(Special Session on ATPG and Fault Simulation), June, 1985. 

Friedman, M., Harel, D., Maamari, F., and Rajski, J., “A 
Dominators View of Stem Regions in Combinational Logic 
and its Application to Fault Simulation”, Technical Report 
87-50, Computer Research Laboratory, Tektronix Laboratories 
1987. 

Harel. D. and Krishnamurthy, B., “Is There Hope for Linear 
Time Fault Simulation?,” in Proceedings of the 17th FTCS 
Symposium, pp. 28-33, July, 1987. 

Harel, D. and Krishnamurthy, B., “A Graph Compaction 
Approach to Fault Simulation”, Technical Report 87-46, 
Computer Research Laboratory, Tektronix Laboratories. 
October 1987. 

Harel, D. and Krishnamurthy, B., “Efficient Graph Transfor- 
mation Based Fault Simulation”, Technical Report 87-55. 
Computer Research Laboratory, Tektronix Laboratories, 
November 1987. 

Harel, D., Sheng, R., and Udell, J.. “Efficient Single Fault 
Propagation in Combinational Circuits,” in Proceeding of 
ICCAD 1987, pp. 2-5, November 1987. 

Hecht, M.S. and Ullman. J.D., “Characterizations of Reduci- 
ble Flow Graphs,” Journal of the Association for Computing 
Machinery, vol. 21, pp. 367-375, 1974 . 
Hong, S.J., “Fault Simulation Strategy for Combinational 
Logic Networks,” in Proc. of 8th International Symp. on 
Fault Tolerant Computing. pp. 96-99, June, 1978. 

Maamari, F. and Rajski, J.. “Reconvergent Fanout Analysis 
and Fault Simulation Complexity of Combinational Cir- 
cuits”, Technical Report 87-3R, VLSI Design Laboratory, 
McGill University, August, 1987. To appear FTCS 1988. 

214-220.1983. 

Paper 38.6 
604 



Automatic Functional Test Program Generation 
for Microprocessors 

Chen-Shang Lin and Hong-Fa Ho 

Department of Electrical Engineering 
National Taiwan University 

Taipei 10764, Taiwan 

ABSTRACT 

A new algorithm, 0-algorithm, for automatic test program 
generation of microprocessors in a user environment is presented. 
Specifically, to eliminate the redundant tests, a weighted-digraph 
model is used to model the signal flow of the general microproces- 
sors. Improved functional fault models of microprocessors are 
derived from Turing machine model. The 0-algorithm is then con- 
structed based on the signal flow model and functional fault 
models. The complexity of our algorithm is better than [6]. 
Moreover, the simulation had shown that the fault coverage is bet- 
ter than 97%. 

1 .INTRODUCTION 

Microprocessors are extremely versatile and are hence widely 
used in many complex systems. However, the test of microproces- 
sors is a nontrivial problem. Especially in the user environment, 
the test of microprocessors is complicated by the fact that the detail 
circuit information is not available. As a result, the classical gate- 
level test generation methods simply can not be applied in this 
situation. A more feasible approach is to generate test program 
based on the functional-level information which is available to the 
users. 

Several algorithms 12-61 had been developed to generate test 
program for microprocessors in the functional level. Thatte, 
Brahme and Abraham [2,6] proposed a graph model for  
microprocessors at the register transfer level. However, the fault 
models were restricted to data path and its associated control func- 
tion. 

In this paper, a new algorithm, 0-algorithm, for automatic test 
program generation of microprocessors is proposed. Specifically, 
to eliminate the redundant tests, a weighted-digraph model is used 
to model the signal flow of the general microprocessors. Improved 
functional fault models of microprocessors, such as those of 
register decoding function, data register function, and U0 pin 
function are derived from Turing machine model. These fault 
models cover more faults than [2,6]. The 0-algorithm is then con- 
structed based on the signal flow model and functional fault 
models. The complexity of our algorithm is better than 161. 

In the next section, the signal flow model of microprocessors 
is described. The improved functional fault models are discussed 
in Section 3. Based on the signal flow model and fault models, a 
new 0-algorithm for generating test program is then developed. 
The 0-algorithm is described in Section 4 and its complexity is 

briefly discussed in Section 5. Then the configuration of the 
automatic test program system based on 0-algorithm is described 
and the applications of the system on MCS8048 and a subset of 
Intel 8086 are shown in Section 6. 

2.SIGNAL FLOW MODEL FOR MICROPROCESSORS 

In order to test microprocessors systematically, the signal flow 
model for microprocessors must first be established. Let RS = 
( R l , R 2 ,  ..., R n )  denote  the set of distinct registers in a 
microprocessor. RS does not include on-chip memory such as 
RAM, cache memory or program ROM. Let IS = (IlJ2, ..., Ip]  
denote the set of distinct instructions of a microprocessor. The sig- 
nal flow of a microprocessor can be modeled as a weighted 
digraph G = (V,E,g), where V is the set of vertices (or nodes) com- 
prised by the set RS , the vemce IN for input ports , and the ver- 
tice OUT for output ports; E is the set of edges in G and E = {e 1 
e is an information flow of instruction Ii between nodes, for all Ii 
in IS 1; and the function g in G is a weighted function from V to 
the set of pairs of integers which will be defined latter. In other 
words, the vertices in G are registers in a microprocessor and the 
edges ( or links ) stand for the information flow including data 
flows and/or address flow of instructions among registers. 

An instruction Ii in IS is a set of paths in G. S(1i) denotes the 
set of source vertice(s) of instruction Ii, and D(Ii) denotes the set 
of sink (destination) vertice(s) of instruction Ii. All instructions in 
IS are classified into three types: type -T for data Transfer instruc- 
tions, type-B for Branch instructions, and type-M for data 
Manipulation instructions[2]. 

Let P(u,v) be the set of directed paths from node U to node v in 
G, and p(u,v) be a path in P(u,v). 

DEFINITION 1: Let Ii be of type-T or type-B. The function 
NI(p(w,v)) is the number of distinct Ii in which at least one con- 
nected path of Ii are in p(w,v). 

Notation < I lJ2,  ..., IiJj, ..., I a>  denotes that the instructions will 
be executed sequentially. Notation [S 1IS21 ... Ism] denotes that 
microinstructions S1, S2, ..., Sm are executed concurrently. 

DEFINITION 2: Controllability of Vi is CY(Vi) = min[ NI( 
p(IN,Vi) ) 1, for all p(IN,Vi) in P(rN,Vi). 

DEFINITION 3: Observability of Vi is OY(Vi) = min[ NI( 
p(Vi,OUT) ) 1. for all p(Vi,OUT) in P(Vi,OUT). 

For example, if there exist three instructions, Ix:"MOV Rx<- 
Ry" , 1y:"MOV Ry<-#d", and 1z:"PUSH Rx" only, then < Iy,Ix > 
is the only way to control the state ( or value ) of register Rx. Hence 
P(IN,Rx) = ( <Iy,Ix> ), and <Iy,LU> is the only element in 

25th ACM/IEEE Design Automation Conference@ 

c~2~~o-3~88~oooo/o605$01 .OO 0 1988 IEEE 
Paper 38.7 

605 


