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Abstract 

Given the geometry of wires for interconnections, we 
want to assign two conducting layers to the segments of 
these wires so that the number of vias required is 
minimized. This layer assignment problem, also referred 
to as the via minimization problem, has been formulated 
as finding a maximum cut of a planar graph. In this 
paper, we propose a new algorithm for optimal layer 
assignment under a general model where the planar graph 
has real-valued edge weights. The time complexity of the 
proposed algorithm is O(n3/2 log n) where n is the number 
of wire-segment clusters in a given layout. In contrast, all 
existing optimal algorithms for layer assignment have the 
time complexity of O(n 3 ). 

1. Introduction 

We consider the layer assignment problem in an 
environment where two conducting layers are used for 
interconnection. Most existing routing algorithms for two 
layers assi n all the vertical wire segments to one layer 
and all t i e  horizontal wire segments to the other. 
Therefore, a large number of vias are introduced to 
interconnect the wire segments on different layers. Vias 
not only reduce the reliability and performance of the 
circuit, but also increase the manufacturing cost. Thus, it 
is desirable to reduce the number of vias. The objective of 
the layer assignment problem is to assign wire segments to 
the layers so that the number of vias is minimized. (This 
problem is also known as the via minimization problem.) 

The layer assignment problem can be stated as follows: 
Given a collection of nets such as in Fig. 1 (borrowed from 
[20]), each net consisting of wire se ments that electrically 
connect a set of terminals, find a fayer assignment to all 
the wire segments such that any two wire segments in 
different nets that cross or overlap each other (The design 
rules must be taken into account.) are assigned to different 
layers. When two connected wire segments are assigned to 
different layers, a via must be introduced. Then 
minimizin the number of vias is equivalent to minimizing 
the total fa  er changes in the layout. A possible layer 
assignment &r the nets in Fig. 1 is shown in Fig. 2 where 3 
vias are introduced for layer changes. 

Hashimoto and Stevens first formulated the layer 
assignment problem as a graph-theoretic maximum cut 
problem [9]. By using a similar but more general graph 
model, Stevens and VanCleemput proposed an 
approximate method [21]. Ciesielski and Kinnen proposed 
an integer programming method [4]. Chang and Du 
developed a heuristic algorithm by splitting vertices in a 

graph [2]. Kajitani identified the wire-segment clusters in 
a layout, and showed that the graph in Hashimoto's model 
is planar [12]. Thus optimal polynomial-time algorithms 
for via minimization were proposed based on the maximum 
cut algorithms for planar graphs (31 [ 121 [ 191 [20]. 

All existing polynomial-time algorithms [3][ 12][ 191 (201 
for optimal layer assignment are based on Hadlock's 
maximum cut algorithm for planar graphs [I] [8]. Since 
Hadlock's algorithm includes subroutines for finding 
all-pair shortest paths and for finding a maximum weight 
matching of a dense graph, these layer assignment 
algorithms are very involved and have the time complexity 
of O(n3) where n is the number of wire-segment clusters 
in the given layout. In contrast, we shall present an 
0 ( J 2  log n) algorithm for optimal layer assignment 
which is faster and more general. The proposed al orithm 
is based on a model due to Pinter [20]. Note t%at the 
original raph model of Hashimoto and Stevens is rather 
restrictet. By introducing ne ative weights associated 
with the edges of the planar grapt, Pinter generalized their 
model to allow wire segments of any orientations (not 
necessarily horizontal or vertical) and to allow 3-way split 
points (Tshape connections) in the nets. We shall show 
that Hadlock's algorithm does not work under this general 
model (The opposite was claimed in [20].) but our 
algorithm does. 

In Pinter's model, a split point is connected to at most 
3 wire segments, i.e. its split number is at most 3. This 
limitation can be easily removed by adoptin the modelin 
methods in [3][21] though the optimality of the propose! 
algorithm must be compromised. Since split points with 
split numbers greater than 3 are uncommon in a layout, it 
is conceivable that this algorithm can get near-optimal 
solutions with such extensions. 

The layer assignment problem considered in this paper 
is sometimes referred to as a constrained via minimization 
problem since the geometry of a layout is given and fixed. 
The problem in which both topology of the layout and the 
layer assignment are to be decided is referred to as an 
unconstrained via minimization problem [2][11](17]. 

In the next section, we briefly review Pinter's graph 
model for layer assignment. In Section 3, a series of 
problem transformations are introduced to show that 
finding a maximum cut of a planar graph can be reduced 
to findin a minimum complete matching of a sparse 
graph. T%e algorithm for optimal layer assignment is then 
presented in Section 4 with emphasis on a recursive 
procedure for finding the minimum complete matching. 
Finally, in Section 5, we will make some remarks on why 
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Hadlock's algorithm can not find a maximum cut under 
Pinter's general model. 

2. The Graph Model 

. In this section, we briefly describe Pinter's graph model 
for layer assignment [20. The emphasis is placed on the 
intuition behind the mo d el. 

In a given layout such as in Fig. 1, one can identify the 
following objects: 

A via candidate is a maximal piece of wire that does 
not cross or overlap any other wire, and can accommodate 
at least one via. 

A wire segment is a piece of a wire connecting two via 
candidates. 

A wire-segment cluster (or simply cluster) is a 
maximal set of mutually crossing or overlapping wire 
segments. 

For example, in Fig. 1, wire segments are labeled by 
numbers 1 through 18. The wire segments 4,5,6,12 and 14 
form one cluster; the wire segments 7,8,9 and 18 form 
another cluster. Connecting the two clusters are 3 via 
candidates. 

Note that in each cluster, once a wire segment is 
assigned to a certain layer, layer assignment of the rest of 
the cluster is forced. Thus there are only two possible 
ways to assign the wire segments in a cluster to layers. 
With a prescribed layer assignment, a cluster is said to be 
flipped over if all the wire segments in the cluster are 
reassigned to the opposite layers. 

The clusters can form a planar graph called the cluster 
graph. Each vertex of the graph corresponds to a cluster, 
and two vertices are connected by an edge iff their 
corresponding clusters are connected to at least a common 
via candidate. The cluster graph for the layout in Fig. 1 is 
shown in Fig. 3 where each vertex is labeled by using a 
representative in its corresponding cluster. 

Assume that a layer assignment such as in Fig. 2 is 
known. Then associated with each edge e of the cluster 
graph is a weight w(e) defined as follows: Let v be the 
number of via candidates connecting the two clusters 
incident to e, and let U be the number of vias introduced 
by the known layer assignment connecting the two 
clusters. Then 

In other words, the weight indicates the via reduction that 
can be achieved due to flipping over either one of the two 
clusters. As an example, in Fig. 3, the weight for the edge 
connecting clusters 5 and 15 is 2 since for this edge v = U 
= 2 (with reference to Fig. 2). If one of the clusters 5 and 
15 is flipped over, then the two vias connecting clusters 5 
and 15 can be eliminated. 

An arbitrary layer assignment L can be obtained from 
a known layer assignment Lo by flipping over a set of 
clusters. Let a(L) and a(L0) be the numbers of vias 
introduced by L and Lo respectively, and let X be the set 

w(e) = U -  (v - U). 

of clusters that are flipped over. Then 
a(L) = o(L0) - C w(e) (1) 

e E E(X,X)  
where E(X,X) is a cut separating X and X, i.e. the set of 
edges connecting vertices in X and vertices not in X. (1) is 
due to the fact that for any two clusters both in X or both 

in x, the via count between the two clusters remains 
unchanged, but for two clusters one in X and one in X, the 
via count is reduced by w(e). In order to minimize the via 
count a(L), we want to find a cut E(X,X) which 
maximizes its weight C w(e), i.e. to find a 

maximum cut. Note that the edge weights w(e) can be 
positive or negative, but a maximum cut always has 
nonnegative weight since X can be 4) and 

C - w(e) = 0 for X = @ . In case that a maximum 
e E E(X,X) 
cut has weight 0, Lo is an optimal layer assignment. 

For the cluster graph in Fig. 3, vertex sets {2,5,8} and 
{11,15} determine a maximum cut of weight 2 .  Thus an 
optimal layer assignment can be obtained from the layer 
assignment shown in Fig. 2 by flipping over clusters 11 and 
15. The resulting layer assignment is shown in Fig. 4. 

3. Problem Transformations 

e E E(X,X) 

Let G = (V,E) be the cluster graph for a given layout. 
Then G is planar and each edge of E has an associated 
real-valued weight. By introducing a series of 
transformations, we will show that a maximum cut of G 
can be found by finding a minimum complete matching in 
a certain graph G' constructed from G. 

Without loss of generality, we assume that G is 
connected. (Otherwise a maximum cut can be found by 
finding maximum cuts in individual connected 
components.) We first triangulate G by adding some new 
edges. A triangulation Gt = (V,Et) of G is a connected 
planar graph embedded in the plane satisfying 

(ii) Each vertex of Gt has degree at least 2, 
(iii) Each face of Gt is enclosed by a simple cycle of 

(iv) Any two faces of Gt share at most one edge. 

(i)  E c Et, 

three edges, and 

We assign zero weight to each new edge in Et - E. As an 
example, a traingulation of the planar graph in Fig. 3 is 
shown in Fig. 5. 

Lemma 1. A maximum cut of G = (V,E) corresponds to a 
maximum cut of Gt = (V,Et), and vice versa. 
Proof: Obvious. 

Consider a geometric dual Gd = (Vd,Ed) of Gt = 

(V,Et) [5]. Gd can be constructed from Gt as follows: 
Consider an embedding of Gt in the plane. Associated 
with each face of G,, there is a vertex in Gd. For each 
edge shared by two faces of G,, there is an edge in Gd 
connecting the two corresponding vertices. A geometric 
dual of the planar graph shown in Fig. 5 is illustrated in 
Fig. 6. We assign to each edge of Ed the same weight as 
its corresponding edge of Et. In general, a geometric dual 
of a planar graph is a multigraph. However, due to the 
construction of G,, Gd contains no self-loops and parallel 
edges, and Gd is regular. 
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Le"a 2. Gd = (Vd,Ed) is a cubic PlaIlZU graph. (A 
graph is cubic if each vertex of the graph is of degree 3.) 
Proof Gd contains no self-loops and parallel edges since 
Gt satisfies (ii) and (iv). Thus Gd is a graph. Each vertex 
of v d  is of degree 3 since Gt satisfies (iii). The planarity 
of Gd is due to the fact that Gd is a geometric dual of G,. 

Q.E.D. 

In Gd = (Vd,Ed), an edge Set D Ed is said to be 
even-degree if each vertex of v d  is incident to an even 
number of edges in D. The weight of an even-degree edge 
set D is the total weight of the edges in D. Since Gd = 

(Vd,Ed) is a geometric dual of Gt = (V,Et), there is a 
one-to-one correspondence between edges of Et and edges 
of Ed. This induces a natual correspondence between the 
cuts of Gt and the even-degree edge sets of Gd [5 ] .  

Theorem 1. A cut of Gt = (V,Et) corresponds to an 
even-degree edge set of Gd = (Vd,Ed), and vice versa. 

For the proof of Theorem 1, please refer to [13 .  Here 
we simply illustrate this theorem by an example. h r  the 
graph in Fig. 5 ,  consider the vertex set X = {8,11}. X 
determines a cut E(X,X) where 

E(X,X) = {(8,2),.(8,5 ,(8,15),(11,2),(11,5),(11,15)}. 
In the dual graph (Fig. 61, the edge set that corresponds to 

two simple cycles. - 

From Theorem 1, finding a maximum cut of Gt is 
equivalent to finding a maximum (weight even-degree 
edge set of Gd. The following lemma c b aracterizes a 
maximum even-degree edge set of Gd. 

Lemma 3. Let D be a maximum even-degree edge set of 
Gd = (Vd,Ed). Then D is either empty or a union of 
vertex-disjoint nonne ative cycles. 
Proof Assume D # 6. Since Gd is a cubic graph, each 
vertex of Gd is adjacent to 0 or 2 edges in D. Thus D is a 
union of vertex-disjoint cycles in Gd. The claim then 
follows from the fact that D is maximum. Q.E.D. 

To find a maximum even-degree edge set of Gd = 

(Vd,Ed), we construct a graph G' = (V',E') from Gd. 
Each vertex v of Gd is replaced by a "star" in G' and each 
edge e of Gd has a surrogate in G' as depicted in Fig. 7. 
For the cubic planar graph in Fig. 6, the constructed graph 
is illustrated in Fig. 8. Define the edge weights of G' as 
follows: the surrogate of each edge e E Ed has the same 
weight as e; and all new edges in stars have zero weights. 
Similar constructions have appeared in [14][18]. 

A matchin M of graph GI= (V',E') is a set of ed es no 
two of which f a v e  a common vertex. If (M 1 = 1 k1 1 /2, 
then M is called a complete matching. A maximum 
weight matching (minimum complete matching) is a 
matching (complete matching) of G' whose total weight is 
maximum (minimum). 

Theorem 2. Let M c E' be a minimum complete matching 
of G' = (VI$'). Then Ed - M is a maximum even-degree 
edge set of Gd = (Vd,Ed). 
Proof Let M C E' be any complete matching of GI. If M 
contains edge (v',v") in a star substituting a vertex v of 
Gd (see Fig. 7), then M must contain all the edges incident 
to v in Gd and hence v has degree 0 in the subgraph of Gd 
induced by Ed - M. On the other hand, if M does not 
contain (v ' ,~ ' ' ) ,  then v has degree 2 in the subgraph. Thus 
Ed - M is an even-degree edge set of Gd. Conversely, let 
D be any even-degree edge set of Gd. As shown in 
Lemma 3, D is either empty or a union of vertex-disjoint 
cycles in Gd. Thus from the construction of GI, one can 
observe that there exists a complete matching M of G'  
such that D = Ed - M. (Such a complete matching is 
illustrated in Fig. 8 with respect to an even-degree edge 
set shown in Fig. 6.) Clearly the weight of Ed - M is 
maximum if and only if the wei ht of M is minimum. 

4. The Algorithm 

assignment and analyze its time complexity. 
Input: The cluster graph Gc = (Vc,Ec) for a given layout. 

Real-valued weights are assigned to  the edges of Gc 
with respect to a known layer assignment. 

6.E.D. 

Let us summarize the algorithm for optimal layer 

Output: A maximum cut of Gc. 
Algorithm MaxCut 
1. Decompose Gc into connected components. For each 

connected component G = (V,E) do steps 2 to 5 .  
2. Construct a triangulation G, = JV,EJ of G = (v,E) 

by adding new edges to G. 
3. Construct a geometric dual Gd = (Vd,Ed) of Gt = 

4. Construct the graph GI = (V',E') from Gd. Each 

5 .  Find a minimum complete matching M of G'. M 

(V,Et). 

vertex of Gd is replaced by a "star" in GI. 

determines a maximum even-degree edge set Ed-M Of 

Gd which corresponds to a maximum cut of Gt and 
thus a maximum cut of G = (V,E). 

components, we have a maximum cut for Gc = (Vc,Ec). 

Let nc and n be the numbers of vertices of Gc and G 
respectively. Since Gc is planar, due to Euler's Theorem 
[5 ] ,  Gc has O(nc) edges. Thus Step 1 can be computed in 
O(nc) time by using a simple depth-first search. Applying 
Euler's Theorem repeatedly, we can see that each of the 

6. Combining the maximum cuts for individual connected 
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graphs G, Gt and Gd has O(n) vertices and O(n) edges. 
G' also has O(n) vertices and O(n) edges for each star in 
G' contains 5 vertices and 7 edges. Each of Step 2 and 
Step 3 takes O(n) time since they can be carried out by 
embedding G and Gt in the plane and identifying their 
faces [lo]. That Step 4 takes O(n) time and Step 6 takes 
O(nc) time is obvious. We have argued that all steps 
except Step 5 takes linear time in the worst case. Below 
we shall describe an O(n3l2 log n) algorithm for Step 5 of 
Algorithm MaxCut. 

A minimum complete matching of G' = (V',E') can be 
found by finding a maximum weight matching of the same 
graph except that the weight w(e) of each edge e E E' must 
be replaced by a new weight W - w(e) where W is a large 
constant. (The negation of w(e) converts a minimization 
problem to a maximization problem. The added large 
constant W forces the obtained matching to be complete.) 
Lipton and Tarjan have presented an O(n3l2 log n) 
algorithm for finding a maximum weight matching of a 

lanar graph by applying the planar separator theorem P 15][16]. For graph G' = (V',E') which is not always 
planar, the same "divide-and-conquer" method can still 
be applied as K. Matsumoto, et al. have pointed out [18]. 

Input: Gra h GI' = (V'',E"). GI' is the same as G' = 
(V',E$ except that the weight w(e) of each edge e E 
E' is replaced by W - w(e) where W is a large 
constant. 

Output: A maximum weight matching of G". 
Algorithm MaxMatchin 
1. If GI' contains a few 60 more than a fixed constant) 

vertices, find a maximum weight matching of GI' by the 
algorithm in [6]. 

2. Otherwise, partition the vertices of GI' into three sets 
A, B, and C such that no edge joins a vertex in A with 

for suitable constants c1 (< 1) and c2. 

and B respectively. Apply the algorithm recursively to 
find maximum weight matchings MA in GA and MB in 
GB. Let M = MA U MB and S = A U B. 

4. Add C one vertex at a time to S. Each time a vertex is 
added to S, replace M by a maximum weight matching 
in Gs, the subgraph of GI' induced by S. Stop when S = 

VI'. 

aver texin B, I A J ,  J B J  5 c l J V " J  and IC1 5 c21V"J 1/2 

3. Let GA and GB be the subgraphs of G" induced by A 

Lemma 4. A minimum complete matching of G' = (V',E') 
can be found in O(n3/2 log n) time by using Algorithm 
MaxMat ching. 
Proof In Algorithm MaxMatching, Step 1 takes constant 
time. The partitioning in Step 2 is uaranteed by the 
planar separator theorem and takes O(nf time [15]. Step 3 
involves two recursive calls on subgraphs of size at most 
c1n. Step 4 takes O(n3/2 log n) time since each updating 

of M takes O(n log n) time and IC1 = O(n'/2) [6]. 
Solving the recurrence relation 

where n1 + n2 5 n and nl,  n2 5 c1n, we have T(n) = 

T(n) = T(nl)  + T(n2) + O(n3/2 log n) 

O(n3/2 log n). (For a detailed analysis of Algorithm 
MaxMatching, please see [18].) Q.E.D. 

Theorem 3. Given a cluster graph Gc = (Vc,Ec) with 
real-valued edge weights, Algorithm MaxCut can find a 
maximum cut of Gc in 0(nZI2 log nc) time. In other 
words, an optimal layer assignment can be found in 
O(nZ/2 log nc) time where nc is the number of clusters in 
a given layout. 

5. Concluding Remarks 

We have presented a new algorithm for optimal layer 
assignment. The algorithm has the time complexity of 
O(n3l2 log n) where n is the number of clusters in a given 
layout. In contrast, all existing polynomial-time 
algorithms for optimal layer assignment are based on 
Hadlock's maximum cut algorithm for planar graphs which 

3 has the time complexity of O(n ) [SI. 

The new algorithm is not only more efficient, but also 
more general. It can find an optimal layer assignment 
under Pinter's general model [20 ) while Hadlock's 

the cluster graph can have negative weights associated 
with its edges. In the following, we will see why Hadlock's 
algorithm can not find a maximum cut in a planar graph 
with negative weights. Hadlock tried to find a maximum 
cut of a planar graph by finding a maximum even-degree 
edge set in the graph's geometric dual Similar to Theorem 

of a maximum even-degree edge set is a union of 
edgedisjoint shortest paths connecting pairs of 
odd-degree vertices. This result is true for planar graphs 
with nonnegative weights, however, is not true for planar 
graphs with negative weights. As an example, for the 
planar graph in Fig. 3, its geometric dual is shown in Fi . 
cycle. (Edges in the cycle are marked with short bars.) 
The complement of the maximum even-degree edge set 
consists of an edge connecting A and C plus a negative 
cycle joining B and C. Note that in the prasence of 
negative cycles, the shortest path is not well-defined, and 
findin a simple path which is shortest is NP-hard [7]. 
Therefore, Hadlock's algorithm can not be adapted to the 
general situation where the planar graph has negative 
weights. 
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V 

Fig. 4. Optimal layer assignment 

e3 

V' 

e2 

V" 

Fig. 7. The star substituting a vertex 

el 

e2 

e3 

(Edges marked with short bars form a cut.) 
Fig. 5. Triangulation G, of G 

(Edges marked with short bars form a complete matching.) 
Fig. 8. Graph G' constructed from Gd 

- 3  

\ \-1 / 

(Edges marked with short bars 

Fig. 6. Geometric dual Gd of Gt 

form an even-degree edge set.) C 
Fig. 9. Geometric dual of G 
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