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Abstract 

A fast and easily parallelizable global routing algorithm for standard 
cells and its parallel implementation is presented. LocusRoute is meant 
to be used as the cost function for a placement algorithm and so this 
context constrains the structure of the global routing algorithm and its 
parallel implementation. The router is based on enumerating a subset of 
all two-bend routes betwecn two points, and results in 16% to 37% fewer 
total number of tracks than the TimberWolf global router for standard 
cells [Sech85]. It is comparable in quality to a maze router and an 
industrial router, but is factor of 10 times or morc faster. Thrcc 
approaches to parallelizing the router are implemented: wire-by-wk 
parallelism, segment-by-segment and route-by-route. Two of these 
approaches achieve significant speedup - route-by-route achieves up to 
4.6 using eight processors, and wire-by-wirc achieves from 5.8 to 7.6 on 
eight processors. 

1 Introduction 

The best way to evaluate a given placement of circuit modules is to 
route it and determine the final area Since routing is a time-consuming 
task typical placement algorithms [Hana72,Brcu77] use other metrics 
such as total wire length or crossing counts that arc easier to calculate. 
The advent of usable commercial multiprocessors is leading us to 
consider using more compute-intensive cost functions if efficient parallel 
algorithms can be developed. The aim of the Locus Project is to 
integrate placement and routing into OM optimization process, and to do 
this by using multiprocessing to increase the sped of the routing. 

This paper presents the first step in the Locus Project LocusRoute, 
a new global routing algorithm for standard cells, and its parallel 
implementation. Our goal is to make the average routing time for one net 
close to the time that it takes to recalculate m m  conventional cost 
functions such as that used in the TimberWolf [Sech85] Simulated 
Annealing algorithm. The intention is for the global router to be 
invoked to ripup and re-route wires whosc end points have changed 
when one or more cells arc moved in an iterative improvement 
placement scheme. This m a s  that routing time must be about one to 
five milliseconds per net on a VAX 11/180-class machine. 

The routing performance of LocusRoute, as measured by total 
number of routing tracks, is better than that of TimberWolf [Sech85] and 
comparable to a maze router and an industrial router. It is fast because it 
investigates only a subsct of two-bend routes between pairs of pins to be 
routed. The routing speed is increased further by parallelizing the 
algorithm in three ways: routing several w k s  at once, routing several 
two-point segments simultaneously, and evaluating possible twc+bend 
routes in parallel. The wire-by-wk parallel approach achieves speedups 
ranging from 5.8 to 7.6 using 8 processors. The route-by-route approach 
achieves speedups of up to 4.6 using 8 processors. Since these two 
"axes" of parallelism arc orthogonal to each other, their respective 
spccdups will multiply. 

This paper is organized as follows: Section 2 reviews related work. 
Section 3 defines the problem of global routing and gives our routing 
modcl. Section 4 describes the LocusRoute algorithm and compares it to 
other routers. Section 5 presents three approaches for spccding up the 
new router using parallel processing, and performancc results. 

2 Related Work 

Previous work on parallel routing [Breu81, Blan81, Rutc84. and 
many others] has generally focused on a fixed hardware mapping for the 
Ltc routing algorithm [Lce61]. As such they lack the flexibility that is 
rcquirrd in practical CAD software such as the global router described in 
[KambS]. Another drawback of special hardware for the Lce algorithm 
is that a uniprocessor implementation can be made very efficient using 
special software data structures that cannot be put easily into fixed 
hardware. A more flexible approach is to use general purpose parallel 
processors, which can be adapted to many applications. Using the 
flexibility of a general purpose multiproccssor, several "axes" of 
parallelism can be exploited. If these axes are orthogonal to each other 
then when used together they can provide significant speedup. Two 
approaches to parallclizing an algorithm are said to be orthogonal if, 
when used together, the resulting speedup is the product of the spccdup 
of the individual methods. 

3 Problem Deflnition and Routlng Model 

Global routing for standard cells first decides for each group of 
electrically equivalent pins (pin clusters) which of those pins are actually 
to be connected. Second, if there is no path between channels when one 
is required, it must dacide either which built-in fcedthrough to use or 
where to insert a fcedthrough cell. Lastly, it must determine the channel 
to use in routing from a pad into thc core cells. 

In this discussion of globd routing there will be no diffemtiation 
betwan fccdthrough cells and built-in fccdthroughs - they are referred to 
jointly as vertical hops. The decision to inscrt a feedthrough cell or use 
a built-in feedthrough is deferred to a post-processing step. This does 
result in some inaccuracy in the track count However, using this 
approximation (and the routing algorithm to be described) the 904-wk 
Primary1 circuit from the standard cell benchmark suite [ h a 8 7 1  global 
routed to 249 tracks, using 995 vertical hops. The actual, post-proccss 
track count using 10 feedthrough cells and 985 built-ins was 253, only 
1.6% more tracks. For the 3029-wk Primary2 circuit with 3424 vertical 
hops (287 feedthroughs, 3137 built-ins) the approximate track count was 
546 and the post-process count was 590, an increase of 8%. 

The usual objective of a global router is to minimize the sum of the 
channel densities of all the channels (hercaftcr called the total density). 
It is important to note that the total density can be traded off with the 
number of vertical hops, so to compare the total density of two global 
routings fairly they should both use the same number of vertical hops. 
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assigns unique numbers to distinct segments of the same wire in 
each channel. This is so that a channel router can distinguish 
be-n two segments and will not inadvertently join them together. 

Wk kay down. The presence of the newly routed wire is put into 
the Cost Array by incrcmenting the array elements wherc the new 
wire resides. Once there, other wires can take it into account. 

Figure 1 -Routing Model 

3.1 Routing Model 

All of the routing algorithms discussed here arc based on the same 
routing model: Each possible routing position in a channel (also called 
routing grid of that channel) is represented as o m  element of an array as 
shown in Figure 1. The array, called the Cost Array, has a vertical 
dimension of the number of rows plus one, and a horizontal dimension 
of the width of the placement in routing grids. Each element of the Cost 
Array contains two values: Hij and Vij. Hij contains the number of of 
wire routcs that pass horizontally through the grid at channel i in 
position j . Vij is the cos& assigned by parameter. of traversing a row in 
travelling from channcl i to channel i + 1 at grid position j .  A wire is 
represented as a list of ( i  , j ) pairs of locations in the Cost Array, 
corresponding to the locations of pins to be joined. 

The objective is to find a minimumcost path for each wire. The 
wire's cost is given by the sum of all of the Hi, and Vij that it traverses. 
Aftcr a path is found for a wire that goes through location ( i , j ) its 
presence is recorded in the Cost Array (the appropriate Hij and Vij arc 
increment&) so that subsequent wires can take it into account- The 
more wires going through a particular location in a channel, the less 
likely it is that area will be used. Note that in this modcl the total 
density is not directly minimized, but rather a combination of average 
density and wire length. 

4 The LocusRoute Algorithm 

In this section the uniprocessor LocusRoute algorithm is described, 
and a performance comparison with other routers is given. There arc 
five steps in the LocusRoute global routing algorithm: 

1. A multi-point wire is decomposed into two-point segments, using 
Kruskal's algorithm -561. This algorithm has running time 
O(n2) in the number of pin clusters. The effect of the sub- 
optimality of this decomposition is discussed in section 4.4 below. 

2. The segments arc further decomposed, if necessary, into 
permutations, which arc the set of possible routes betwecn each pin 
in a pin cluster. 

3. A low-cost path in the Cost Array is found for each permutation by 
evaluating a subset of the two-bend routes between each pin pair. 
The permutation with thc best cost is selected as the route for that 
segment. 

The details of the second and third steps arc described in the following 
sections. The first and last two arc simple enough that the above 
description suffices. 

4.1 Decomposition into Permutations 

Each two-point segment consists of pairs of pin clusters that contain 
electrically equivalent pins. The LocusRoute algorithm considers routes 
between every pin in one cluster and every pin in the other cluster. Each 
such route is called a permutation. Figure 2 illustrates thrcc of the four 
possible permutations between clusters A and E ,  which have two pins 
each. The four possible permutations arc: (A 1, B 1) , (A 1 , B 2). (A 2, B 1) 

, (A 2, B 2). If clustcrs A and B arc separated by only a short horizontal 
distance. then the (A 1 , E  2) permutation is most likely the leastcost path 
of the four. If the horizontal distance is large then it is possible that any 
one of the four permutations could have the lowcost path, and hence all 
should be investigated. This has been c o n h e d  experimentally, and a 
constant horizontal separation (300 routing grids) has been determined 
beyond which total density will improve if all four permutations arc 
evaluatcd 

Standard Cell Rows 

+I Pincluster 

cluster B 

CI 

J 

Route Pennutatkm A2 -> 82 
t 

Figure 2 -Permutation Decomposition @Segment 

4.2 Route Enumeratlon 

The LocusRoute algorithm searches for a lowcost path for a 
permutation by enumerating a number of different routes. The idea is to 
evaluate the cost of a subset of all two-bend routes between the two pins, 
and then choose the one with the lowest cost. Generation of two-bend 
routes is discussed in Wg861. Figure 3 illustrates three possible two- 
bend (or less) routes inside a representation of the Cost Array as a small 
example. 

If the horizontal distance between the two pins is H routing grids, 
and the vertical difference is C channels then the total number of two- 
bend routes is C + H .  A parameter, called thc two bendpercent (TBP) 
dictates the percentage of the total number possible two-bend routes to 
be evaluated. Thus the total number of routes evaluated is given by 

g x ( C  + H). 
4. Traceback. This step joins all the segments back together, and 
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4.4 Uniprocessor Performance Results 

This section compares the quality and execution time of LocusRoute 
with other routers. 

Circuit 
Name 

BNRE 

MDC 

Figure 3 - Sample Two-BendRoutes 

# Total Density 
Wires Locus TWolf %Few 

420 138 179 22% 

575 150 179 16% 

Thc priority order of the routes evaluated (when TBP is less than 
100) is as follows: first all principally horizontal routes (those with 
bends only at the left and right extremes) arc evaluated. Then the 
principally vertical routes (those with bends at the upper and lower 
extremes) arc evaluated. Horizontal routes art evaluated first because it 
is important that all of the potential channels for the route be examined 
at least once. Within the horizontal and vertical groups, routes are 
searched in bisection order, i.e. if the limits of the group span arc 

normalize to [0,11 then the routes arc priori- as 0.1,  +, +, 4.4. 
and so Oh 

Primary2 

The two-bend evaluation approach was calibrated against a bast- 
cost path maze router between the two points. Note that both routers arc 
not allowed to go beyond the bounding box of the two end points of the 
segment This is different than comparing against a maze router for 
multipoint wires since that is a less constrained problem and the maze 
router will have more success, as discussed in Scction 4.4. 
Experimentally, it was determined that a TBP of 20% would result in a 
path as good as that found by the mazc router, as compared on the basis 
of total density for the e n t k  circuit On all of the test circuits uscd in 
the experiments discussed in the section 4.4, the LocusRoute router's 
total density was within 2% of that obtained by thc two-point maze 
router, with one exception of 3.3%. Most of the differences w e n  below 
1%. This is surprising in that the maze router looks for not only two- 
bend routes but for three or more bend routes. It implies that two-bend 
routes provide a sufficiently rich route set for thc standard cell routing 
problem. 

3029 563 702 20% 
4.3 Iteration 

The LocusRoute algorithm makes use of a general iterative 
technique in the manner described in [Nair87]. Briefly, this means that 
after the first time all wires arc routed, each is sequentially ripped up 
from the Gmt Array and then re-routed. By routing each wire several 
times (typically four is sufficient), the wire order-dcpendcncy is d u d  
and the final answer is improved by five to ten percent Also - of benefit 
to the end-purpose of integrated placement and routing - the nature of 
iteration is similar to the placement environment in which wircs arc 
ripped UP and =-routad many times. 

Table 1 shows a comparison between the LocusRoute global router 
and the Timberwolf [Scch85] global router for several industrial 
circuits. These circuits arc from several sources: The standard cell 
Benchmark suitc (Primaryl, F"ary2, Test06 [prca87]), Bell-Northcm 
Research Ltd. (BNFU->BNRE), and the University of Toronto 
Microelectronic Development Ccntrc (MIX). The placement for all of 
the circuits was done by the ALTOR standard cell placement program 
[Rose85, Rosc881. The Timberwolf version uscd was Timberwolf 4.1, 
obtained in July 1987. LocusRoute shows significantly bcttcr total 
&nsity than does the Timberwolf global router, ranging from 16% to 
37% fewer tracks. The principal reason is that the Timberwolf global 
router is constrained to use only the minimum number of vertical hops, 
whereas LocusRoute uses considerably more. This is a reasonable 
practice in currcnt technology because many standard cells contain 
"free" built-in fccdthroughs. The execution times of LocusRoute and 
Timberwolf arc comparable for most of the examples, though 
Timberwolf is faster by a factor of 8 and 3 respectively for circuits 
Test06 and Primary2. This is due to the fact that the LocusRoute 
algorithm inc-s in running time proportional to the arca c o v e d  by 
the wire, which is much larger in thcse two circuits. 

Bh'RC 

I Test06 1 1673 I 335 I 537 I 37% I 

Table 1 - Comparison of LoclrsRoute and Timberwolf 

For comparison purposes a maze router [Let611 was devclopcd that 
exhaustively determines the optimal solution to the two-point routing 
problem as &find in Section 3. Note that it uses the same cost 
function as the LocusRoute router. It also determines a good 
approximation to the minimumcost Stciner tnx for multi-point w k s  
using thc approach described in [Aker72]. The maze router was 
carcfully optimized for spced. Table 2 shows the comparison of total 
density and execution time for the maze router and the LocusRoute 
router, for all of the test circuits. The comparison is made on the basis of 
roughly equal numbers of vertical hops. Execution timcs arc for four 
iterations over all wires on a DEC Micro Vax II. 
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5 Parallelization 

Circuit 
Name 

BNRE 

MDC 

Total Density Time (Micro Vax Us) 
Locus Mazc Diff Locus Mazc Factor 

138 129 7% 88 2318 27x 

150 141 6% 178 3173 18x 

~ - 
Primaryl 262 255 

BNRC 202 189 

3% 325 6534 20x 

7% 363 7250 uht 

BNRB 

BNRA 

Test06 

Table 2 - Comparison OfbcusRoute and Maze Router 

320 308 4% 599 15116 25x 

315 294 7% 769 19652 26x 

335 316 6% 5137 92272 18x 

For all circuits the LocusRoute total density (total number of routing 
tracks) is no grcatcr than 7% m m  than that achieved by the maze 
router, and in some cases is as little as 3%. Most of this difference is 
due to the sub-optimality of dividing the wires up into two point nets. 
LocusRoute is markedly fastcr than the mazc router - ranging from 13 to 
27 times fastcr. This gain in speed is more than worth the increase in 
total density for the end-purpose of integrated placement and routing. 

Primary2 

For two of our circuits, we can also comparc the total routing 
density with the United Technologies global router uscd in the m t  
benchmark effort at the 1987 Physical Design Workshop 
[PFea87,Robe87]. The placements used above for circuits Primaryl and 
Primary2 were also routed by the UT router. Table 3 shows the 
comparison of total density for both circuits, with each router using 
roughly the same number of vertical hops. The total density of the UT 
router for circuit Primaryl is notably less than for the LocusRoute 
router. This is probably due to the fact that the UT router also performs 
neighbour exchanges and cell orientation changes on the placement in 
order to reduce the total number of tracks. The LocusRoute total density 
for circuit Primary2 is slightly less than that achieved by the UT router. 
We have no information on the execution time of the UT router, except 
that for circuits near the size of Primary2, it would take roughly loo00 
Vax 11/180 seconds [Robe87]. 

563 549 3% 3758 48295 13x 

Total Density 

Primary1 

Primary2 3029 560 562 

Table 3 - Comparison of LocusRoute and Benchmark Router 

In this section several ways of parallelizing the LocusRoute router 
arc proposed and implementd 

Wire-based Parallelism. Each proassor is given an entire multi- 
point wire to route. 

Segment-bad Parallelism. Each two-point segment produced by 
the Kruskal decomposition can be routed in parallel. 

Permutation-based Parallelism. Each of the four possible 
permutations. as discussed in Section 4.1, can be evaluated in 
parallel. 

Route-based Parallelism. Each of the possible two-bend routes for 
every permutation can be evaluated in parallcl. 

Note that these arc only potential axes of parallelism. It is possible 
to eliminate some of them as uneconomical by using statistical run-time 
measurements of the sequential router. For example, the number of 
two-point segments that actually need to have all four permutations 
evaluated is quite small with rcspect to thc total. Thus, pcrmutation- 
based parallelism is not going to provide significant speedup and isn't 
worth the time it requires to develop. Othcr measurements, however, 
show that the time spent evaluating the cost of two-bend routes ranges 
from 50 to 90 percent of the total routing time, so that some amount of 
spccdup from route-based parallelism can be expected. 

The following sections gives the details of tlmc axes of parallelism, 
their performance and a quantitative measure of the of degradation in 
quality if there is some. 

5.1 Wire-Based Parallelism 

In Wire-Based parallelism, each multi-point wire is given to a 
separate proassor, which runs the LocusRoute routing algorithm as 
described in Section 4. Thus, each processor executes the following 
"flow" for a diffmnt wire: Prior to decomposition, if the iteration 
technique is uscd, the wire must be "ripped up" out of the Cost Array. 
Next, each wire is decomposed into two-point nets. and possibly further 
into permutations. A subset of the potential two-bend routes is 
generated, and then evaluated by traversing the Cost Array. When a 
final route is chosen, the Cost Array is updated to reflect the new 
presence of that route. 

The Cost Array is a shared data structure to which all processors 
have read and write acccss. This is an excellent axis of parallelism: if 
the sharing of the G x t  Array docs not cause performance degradation 
due to memory contention, the speedup should simply be thc number of 
wires that arc routad in parallel. The resulting parallel answer, however, 
will not necessarily be the same as the sequential answer. The problem is 
that the sequential router has complete knowledge of all wires that have 
already bcen routed, by virtue of their presence in the cost array. The 
parallel router has less information because it docsn't sce the wires that 
arc being routed simultaneously. The more wires routed in parallel, the 
less information each proassor has to choose good routes that avoid 
congestion and hcncc the total density increases. Thc total density will 
increase as the number of processors increases. The measured effect on 
total density is discussed below, in Section 5.1.1. 
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An interesting issue is whether or not each procrssor should lock the 
Cost Array as it both rips up and re-routes wircs in the Cost Array. Thc 
act of ripping up a route is essentially a decrement, and re-routing is an 
increment on a cell in the Cost Array. Locking the Cost Array during 
these operations (to ensure that two simultaneous operations on the same 
element docs not prevent one of the operations from being lost) can 
cause a serious performance &gradation. However, the final routing 
quality did not &crease when locking was omintd The reason for this 
is that the probability of two processors acccssing the same Cost Array 
element (of which there arc many) at the same instant is very low. Even 
if very few increment or decrement operations arc lost, the effect on final 
quality is negligible since only a f tw elements would be wrong by a 
small amount 

BNRD 

Primaryl 

5.1 .l WlreBased Parallel Results 

156 22 7.0 

321 41 6.8 

Figure 4 is a plot of the speedup versus number of processors for the 
904-wirc (Primaryl) example running on au eight-processor Encore 

"AX. ~ h c  speedup for p processors, S, is calculated as T 1  T' 
where T is the execution time on one processor and T, is the execution 
time using p processors. The Encorc uses National 32032 chip sets 

which, in our benchmarks, timed out slightly faster than a DEC Micro 
vax II. BNRB 

BNRA 

/ 

691 92 7.6 

878 124 7.1 

31 2 / 
1 2 3 4 5 6 7 8  

Number of Processors 

Flgure 4 - Wire-Based Speedup for Circuit Primuiyl 

Note that the execution time is only the actual routing computation time, 
excluding input time. The "knee" in the curve at five processors occurs 
becausc on an eight-processor Encore two processors share one cache. 
When five or more processons arc used, pairs of processors interfere with 
each other more. For this circuit the increase in total density (between 1 
and 8 proccssors) is negligible, and the number of vertical hops increases 
about 3%. 

Table 4 gives the speedup using eight processors for the other test 
circuits. Thc speedup ranges from 5.8 for a smaller circuit to 7.6 for the 
largest. The speedup is less for smaller circuits because they arc done in 
such a short time, and the startup overhead becomes a factor. The 
execution time is for four iterations over all the wircs. It was discovend 
that very large global wircs, such as TRUE or FALSE that have up to 
150 pins, caused a severe degradation in speedup. This is becaus our 
system handles those nets just like MY other, and the O(n 2, nature of the 
Kruskal algorithm causes load balancing problems. Since most 
production systems treat TRUE and FALSE signal nets differently 
(usually tapping directly into the power lines with special cells) thcse 
were eliminated under the assumption that they could be handled quickly 
that way. 

Table 5 gives the &nsity and vertical hop counts for both 1 and 8 
processors using wirc-based parallelism. The &gradation in total 
density ranges between .7% to 7.6%. The increase in vertical hops is 
generally 3% or less, with one exception. In the placement context this 
level of &gradation is tolerable, though we have considend two ways of 
reducing the problem. The first is to try to ensure that the different 
processors only deal with wircs that arc in distinct physical arcas, so that 
the wires routed simultaneously do not interac~ This approach was not 
implemented bccause in the placement context (with incremental 
placement "moves") the wires arc most likely to be in the same area and 
Can't be separated. 

1;: 1 Lr  1 
~ a-r 1 Time (s) Time (s) Speedup 

1 BNRC I 221 I 33 I 6.7 I 

Table 4 - Wire-Based Parallelism Speedup 

The sccond way to d u c e  processor interference is not to rip up a 
route until the new route is & t e r m i d .  In this way there is a much 
shorter period of time in which the cost array d a s  not contain the 
presence of the wirc. Unfortunately. this severely degrades the new 
route of the wire itself since it sees thc old copy of itself when new 
routes arc being evaluated. Expcrimntally, the &gradation was found 
to be bad enough to nullify any gain from the approach. 

5.2 Segment-Based Parallellsm 

In segment-based parallelism, each two-point segment of a wire is 
given to a different processor to route. This is the stage following the 
Kruskal &composition, but prior to the evaluation of different two-bend 
routes. Measurements of the sequential router showed that about 60% of 
the routing time was spent on wires with more than one segment This 
means that a speedup of about two might be expected using thrcs 
processors. Even though there arc many wires that provi& two or 
thru-way parallel tasks, however, the size of those tasks are not 
ncccssarily qual.  The amount of time taken by the LocusRoute router 
to route two points is proportional to the Manhattan distance between the 
two points. If, in a thrcc-point win, two of the points arc close together 
and the third is far away, it will then take much longer to route one 
segment than the other. The processor assigned to the short segment will 
be idle while the longer one is being routed. This unequal load prevents 
a reasonable speedup. On the ttst circuits a speedup of about 1.1 using 
two processors was measud .  
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Tabla 5 - Wire-Based Parallelism Quality 

It is fairly clear. however, that an extra processor could be assigned 
to a number of processors that arc routing different wires. It is likely 
that at any given time, one of them will be able to usc the extra processor 
to route an extra segment. This technique would become essential in 
wire-based parallelism if the number of processors were on the ordcr of 
the number of wires. In that case, the load balance would become a 
problem becausc wires with many segments take much longer than wires 
with few segments. Hence segment-based parallelism could be used as a 
method to balance those loads. 

ideal . . . . . . . 

speedup '1, 
3 

2 

1 

1 2 3 4 5 6 7 8  

Number of Processors 

Figure 5 - Route-Based Speedup for Test06 

5.3 RoutsBased Parallelism 

In route-based parallelism all of the two-bend routes to be evaluated 
arc divided among processors. Each finds the lowcst-cost path among the 
set of two-bend routes that it is assigned. When all processors finish, the 
route with the best overall cost is selected. In this case the processor 
loads arc well b a l d  becausc the routes arc all of the same length, and 
the number of routes is evenly divided among the processors. 

Figure 5 is a plot of the speedup versus number of processors for the 
It achieves a speedup of 4.6 using 8 circuit Tcst06, a large circuit. 

proccssors. 

Table 6 gives the best speedup achieved for all of the test circuits, 
ranging from 1.2 using 2 processors to 4.6 using 8 processors. The 
principal reason for the limitation in speedup is the sequential portion of 
the routing: the wim decomposition and the post-route processing that 
places the presence of the route into the Cost Array. On the small circuits 
that have lesser speedup, the sequential portion is about 50% of the total 
routing time, while on the larger circuits which have better spccdup the 
sequential portion ranges from 10-1596. Another reason is that some 
segments have only one potential route, limiting parallelism. 

Circuit Best Route-based Speedup 1 ;= 1 ( s p e e d u P ; F  I 
1.8/3 I 
1.613 

2.114 

2.014 

3.6/5, 4.613 

primary2 3.315 

Table 6 - Performance @Route-Based Parallelism 

5.4 Combining Two Axes of Parallelism 

The wire-bascd parallel and route-based parallel approaches arc 
perfectly orthogonat; hence thcir spccdups should "multiply". Assume, 
for a given circuit that a speedup of S, is achieved using *-based 
parallelism on W processors, and a speedup of S, is achieved using 
route-based parallclism on R processors. Then, because the two 
approaches arc orthogonal, the resulting speedup when they are used 
together should be S, x S ,  using W x R processors. This modcl 
neglects the effect of memory contention that may occur when the 
number of processors is increased dramatically. Table 7 shows the best 
predicted speedup for the test circuits. Combined speedup ranges from 7 
using 16 processors to 33 using 64 proocssors. The smaller circuits arc 
routed very quickly and so it is difficult to get speedups p a t e r  than 10 
due to the startup overhead. The larger circuits benefit greatly from the 
combination of the approaches. 

Table 7 also contains the average routing time per net on one 
proccssor, A 1, and what thc the average routing time per net would be 

under the maximum spc~dup, A ~ .  That is, A~=S--LS;.  ~ h c  

anrage routing times for all circuits, under thc various speedups range 
from 5.0ms to Zms, and approaches our goal of one to five milliseconds 
per net. 

A 
w x  

Paper 14.3 
194 
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Table 7 - Predicted Combined Speedup of Wire and Route Parallelism 

134 95 

5.5 Conclusions 

A new global routing algorithm for standard cells and its parallel 
implementation has been presented. The LocusRoute algorithm users 
significantly fewer tracks than the TimberWolf standard cell global 
router, and is comparable to a maze routcr and an industrial router. It i s  
more than a factor of 10 faster than either of the two latter routers. Three 
axes of orthogonal parallelism were developed to spced up the 
LocusRoute router further. Two of the three axcs that were implemented 
achieved significant speedup - up to 7.6 using eight processors and 4.6 
using eight processors. They should produce combined speedups of up 
to 33 times. 

In the future, the combined approach will be run on a multiproassor 
with more processors. Using a sophisticated scheduling algorithm wc 
hope to do bemr than simple multiplication of speedups. The Locus 
placement environment is currently being dcvelopcd, and will be 
cambined with the LocusRoute global router. Our aim is to achieve 
amaller final aren by using the global routing as a be- measure of each 
placement. 
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