
LocusRoute: A Parallel Global Router for Standard Cells

Jonathan Rose
Computer Systems Laboratory
Center for Integrated Systems

Stanford University, Stanford CA 94305

Abstract

A fast and easily parallelizable global routing algorithm for standard
cells and its parallel implementation is presented. LocusRoute is meant
to be used as the cost function for a placement algorithm and so this
context constrains the structure of the global routing algorithm and its
parallel implementation. The router is based on enumerating a subset of
all two-bend routes betwecn two points, and results in 16% to 37% fewer
total number of tracks than the TimberWolf global router for standard
cells [Sech85]. It is comparable in quality to a maze router and an
industrial router, but is factor of 10 times or morc faster. Thrcc
approaches to parallelizing the router are implemented: wire-by-wk
parallelism, segment-by-segment and route-by-route. Two of these
approaches achieve significant speedup - route-by-route achieves up to
4.6 using eight processors, and wire-by-wirc achieves from 5.8 to 7.6 on
eight processors.

1 Introduction

The best way to evaluate a given placement of circuit modules is to
route it and determine the final area Since routing is a time-consuming
task typical placement algorithms [Hana72,Brcu77] use other metrics
such as total wire length or crossing counts that arc easier to calculate.
The advent of usable commercial multiprocessors is leading us to
consider using more compute-intensive cost functions if efficient parallel
algorithms can be developed. The aim of the Locus Project is to
integrate placement and routing into OM optimization process, and to do
this by using multiprocessing to increase the sped of the routing.

This paper presents the first step in the Locus Project LocusRoute,
a new global routing algorithm for standard cells, and its parallel
implementation. Our goal is to make the average routing time for one net
close to the time that it takes to recalculate m m conventional cost
functions such as that used in the TimberWolf [Sech85] Simulated
Annealing algorithm. The intention is for the global router to be
invoked to ripup and re-route wires whosc end points have changed
when one or more cells arc moved in an iterative improvement
placement scheme. This m a s that routing time must be about one to
five milliseconds per net on a VAX 11/180-class machine.

The routing performance of LocusRoute, as measured by total
number of routing tracks, is better than that of TimberWolf [Sech85] and
comparable to a maze router and an industrial router. It is fast because it
investigates only a subsct of two-bend routes between pairs of pins to be
routed. The routing speed is increased further by parallelizing the
algorithm in three ways: routing several w k s at once, routing several
two-point segments simultaneously, and evaluating possible twc+bend
routes in parallel. The wire-by-wk parallel approach achieves speedups
ranging from 5.8 to 7.6 using 8 processors. The route-by-route approach
achieves speedups of up to 4.6 using 8 processors. Since these two
"axes" of parallelism arc orthogonal to each other, their respective
spccdups will multiply.

This paper is organized as follows: Section 2 reviews related work.
Section 3 defines the problem of global routing and gives our routing
modcl. Section 4 describes the LocusRoute algorithm and compares it to
other routers. Section 5 presents three approaches for spccding up the
new router using parallel processing, and performancc results.

2 Related Work

Previous work on parallel routing [Breu81, Blan81, Rutc84. and
many others] has generally focused on a fixed hardware mapping for the
Ltc routing algorithm [Lce61]. As such they lack the flexibility that is
rcquirrd in practical CAD software such as the global router described in
[KambS]. Another drawback of special hardware for the Lce algorithm
is that a uniprocessor implementation can be made very efficient using
special software data structures that cannot be put easily into fixed
hardware. A more flexible approach is to use general purpose parallel
processors, which can be adapted to many applications. Using the
flexibility of a general purpose multiproccssor, several "axes" of
parallelism can be exploited. If these axes are orthogonal to each other
then when used together they can provide significant speedup. Two
approaches to parallclizing an algorithm are said to be orthogonal if,
when used together, the resulting speedup is the product of the spccdup
of the individual methods.

3 Problem Deflnition and Routlng Model

Global routing for standard cells first decides for each group of
electrically equivalent pins (pin clusters) which of those pins are actually
to be connected. Second, if there is no path between channels when one
is required, it must dacide either which built-in fcedthrough to use or
where to insert a fcedthrough cell. Lastly, it must determine the channel
to use in routing from a pad into thc core cells.

In this discussion of globd routing there will be no diffemtiation
betwan fccdthrough cells and built-in fccdthroughs - they are referred to
jointly as vertical hops. The decision to inscrt a feedthrough cell or use
a built-in feedthrough is deferred to a post-processing step. This does
result in some inaccuracy in the track count However, using this
approximation (and the routing algorithm to be described) the 904-wk
Primary1 circuit from the standard cell benchmark suite [h a 8 7 1 global
routed to 249 tracks, using 995 vertical hops. The actual, post-proccss
track count using 10 feedthrough cells and 985 built-ins was 253, only
1.6% more tracks. For the 3029-wk Primary2 circuit with 3424 vertical
hops (287 feedthroughs, 3137 built-ins) the approximate track count was
546 and the post-process count was 590, an increase of 8%.

The usual objective of a global router is to minimize the sum of the
channel densities of all the channels (hercaftcr called the total density).
It is important to note that the total density can be traded off with the
number of vertical hops, so to compare the total density of two global
routings fairly they should both use the same number of vertical hops.

25th ACM/iEEE Design Automation Conference@

CH2540-3/88/0000/0189$01.00 0 1988 IEEE
Paper 14.3

189

n.. v ..
'I . V Rovtvlp Pin

5.

assigns unique numbers to distinct segments of the same wire in
each channel. This is so that a channel router can distinguish
be-n two segments and will not inadvertently join them together.

Wk kay down. The presence of the newly routed wire is put into
the Cost Array by incrcmenting the array elements wherc the new
wire resides. Once there, other wires can take it into account.

Figure 1 -Routing Model

3.1 Routing Model

All of the routing algorithms discussed here arc based on the same
routing model: Each possible routing position in a channel (also called
routing grid of that channel) is represented as o m element of an array as
shown in Figure 1. The array, called the Cost Array, has a vertical
dimension of the number of rows plus one, and a horizontal dimension
of the width of the placement in routing grids. Each element of the Cost
Array contains two values: Hij and Vij. Hij contains the number of of
wire routcs that pass horizontally through the grid at channel i in
position j . Vij is the cos& assigned by parameter. of traversing a row in
travelling from channcl i to channel i + 1 at grid position j . A wire is
represented as a list of (i , j) pairs of locations in the Cost Array,
corresponding to the locations of pins to be joined.

The objective is to find a minimumcost path for each wire. The
wire's cost is given by the sum of all of the Hi, and Vij that it traverses.
Aftcr a path is found for a wire that goes through location (i , j) its
presence is recorded in the Cost Array (the appropriate Hij and Vij arc
increment&) so that subsequent wires can take it into account- The
more wires going through a particular location in a channel, the less
likely it is that area will be used. Note that in this modcl the total
density is not directly minimized, but rather a combination of average
density and wire length.

4 The LocusRoute Algorithm

In this section the uniprocessor LocusRoute algorithm is described,
and a performance comparison with other routers is given. There arc
five steps in the LocusRoute global routing algorithm:

1. A multi-point wire is decomposed into two-point segments, using
Kruskal's algorithm -561. This algorithm has running time
O(n2) in the number of pin clusters. The effect of the sub-
optimality of this decomposition is discussed in section 4.4 below.

2. The segments arc further decomposed, if necessary, into
permutations, which arc the set of possible routes betwecn each pin
in a pin cluster.

3. A low-cost path in the Cost Array is found for each permutation by
evaluating a subset of the two-bend routes between each pin pair.
The permutation with thc best cost is selected as the route for that
segment.

The details of the second and third steps arc described in the following
sections. The first and last two arc simple enough that the above
description suffices.

4.1 Decomposition into Permutations

Each two-point segment consists of pairs of pin clusters that contain
electrically equivalent pins. The LocusRoute algorithm considers routes
between every pin in one cluster and every pin in the other cluster. Each
such route is called a permutation. Figure 2 illustrates thrcc of the four
possible permutations between clusters A and E , which have two pins
each. The four possible permutations arc: (A 1, B 1) , (A 1 , B 2). (A 2, B 1)

, (A 2, B 2). If clustcrs A and B arc separated by only a short horizontal
distance. then the (A 1 , E 2) permutation is most likely the leastcost path
of the four. If the horizontal distance is large then it is possible that any
one of the four permutations could have the lowcost path, and hence all
should be investigated. This has been c o n h e d experimentally, and a
constant horizontal separation (300 routing grids) has been determined
beyond which total density will improve if all four permutations arc
evaluatcd

Standard Cell Rows

+I Pincluster

cluster B

CI

J

Route Pennutatkm A2 -> 82
t

Figure 2 -Permutation Decomposition @Segment

4.2 Route Enumeratlon

The LocusRoute algorithm searches for a lowcost path for a
permutation by enumerating a number of different routes. The idea is to
evaluate the cost of a subset of all two-bend routes between the two pins,
and then choose the one with the lowest cost. Generation of two-bend
routes is discussed in Wg861. Figure 3 illustrates three possible two-
bend (or less) routes inside a representation of the Cost Array as a small
example.

If the horizontal distance between the two pins is H routing grids,
and the vertical difference is C channels then the total number of two-
bend routes is C + H . A parameter, called thc two bendpercent (TBP)
dictates the percentage of the total number possible two-bend routes to
be evaluated. Thus the total number of routes evaluated is given by

g x (C + H).
4. Traceback. This step joins all the segments back together, and

Paper 14.3
190

4.4 Uniprocessor Performance Results

This section compares the quality and execution time of LocusRoute
with other routers.

Circuit
Name

BNRE

MDC

Figure 3 - Sample Two-BendRoutes

Total Density
Wires Locus TWolf %Few

420 138 179 22%

575 150 179 16%

Thc priority order of the routes evaluated (when TBP is less than
100) is as follows: first all principally horizontal routes (those with
bends only at the left and right extremes) arc evaluated. Then the
principally vertical routes (those with bends at the upper and lower
extremes) arc evaluated. Horizontal routes art evaluated first because it
is important that all of the potential channels for the route be examined
at least once. Within the horizontal and vertical groups, routes are
searched in bisection order, i.e. if the limits of the group span arc

normalize to [0,11 then the routes arc priori- as 0.1, +, +, 4.4.
and so Oh

Primary2

The two-bend evaluation approach was calibrated against a bast-
cost path maze router between the two points. Note that both routers arc
not allowed to go beyond the bounding box of the two end points of the
segment This is different than comparing against a maze router for
multipoint wires since that is a less constrained problem and the maze
router will have more success, as discussed in Scction 4.4.
Experimentally, it was determined that a TBP of 20% would result in a
path as good as that found by the mazc router, as compared on the basis
of total density for the e n t k circuit On all of the test circuits uscd in
the experiments discussed in the section 4.4, the LocusRoute router's
total density was within 2% of that obtained by thc two-point maze
router, with one exception of 3.3%. Most of the differences w e n below
1%. This is surprising in that the maze router looks for not only two-
bend routes but for three or more bend routes. It implies that two-bend
routes provide a sufficiently rich route set for thc standard cell routing
problem.

3029 563 702 20%
4.3 Iteration

The LocusRoute algorithm makes use of a general iterative
technique in the manner described in [Nair87]. Briefly, this means that
after the first time all wires arc routed, each is sequentially ripped up
from the Gmt Array and then re-routed. By routing each wire several
times (typically four is sufficient), the wire order-dcpendcncy is d u d
and the final answer is improved by five to ten percent Also - of benefit
to the end-purpose of integrated placement and routing - the nature of
iteration is similar to the placement environment in which wircs arc
ripped UP and =-routad many times.

Table 1 shows a comparison between the LocusRoute global router
and the Timberwolf [Scch85] global router for several industrial
circuits. These circuits arc from several sources: The standard cell
Benchmark suitc (Primaryl, F"ary2, Test06 [prca87]), Bell-Northcm
Research Ltd. (BNFU->BNRE), and the University of Toronto
Microelectronic Development Ccntrc (MIX). The placement for all of
the circuits was done by the ALTOR standard cell placement program
[Rose85, Rosc881. The Timberwolf version uscd was Timberwolf 4.1,
obtained in July 1987. LocusRoute shows significantly bcttcr total
&nsity than does the Timberwolf global router, ranging from 16% to
37% fewer tracks. The principal reason is that the Timberwolf global
router is constrained to use only the minimum number of vertical hops,
whereas LocusRoute uses considerably more. This is a reasonable
practice in currcnt technology because many standard cells contain
"free" built-in fccdthroughs. The execution times of LocusRoute and
Timberwolf arc comparable for most of the examples, though
Timberwolf is faster by a factor of 8 and 3 respectively for circuits
Test06 and Primary2. This is due to the fact that the LocusRoute
algorithm inc-s in running time proportional to the arca c o v e d by
the wire, which is much larger in thcse two circuits.

Bh'RC

I Test06 1 1673 I 335 I 537 I 37% I

Table 1 - Comparison of LoclrsRoute and Timberwolf

For comparison purposes a maze router [Let611 was devclopcd that
exhaustively determines the optimal solution to the two-point routing
problem as &find in Section 3. Note that it uses the same cost
function as the LocusRoute router. It also determines a good
approximation to the minimumcost Stciner tnx for multi-point w k s
using thc approach described in [Aker72]. The maze router was
carcfully optimized for spced. Table 2 shows the comparison of total
density and execution time for the maze router and the LocusRoute
router, for all of the test circuits. The comparison is made on the basis of
roughly equal numbers of vertical hops. Execution timcs arc for four
iterations over all wires on a DEC Micro Vax II.

Paper 14.3
191

5 Parallelization

Circuit
Name

BNRE

MDC

Total Density Time (Micro Vax Us)
Locus Mazc Diff Locus Mazc Factor

138 129 7% 88 2318 27x

150 141 6% 178 3173 18x

~ -
Primaryl 262 255

BNRC 202 189

3% 325 6534 20x

7% 363 7250 uht

BNRB

BNRA

Test06

Table 2 - Comparison OfbcusRoute and Maze Router

320 308 4% 599 15116 25x

315 294 7% 769 19652 26x

335 316 6% 5137 92272 18x

For all circuits the LocusRoute total density (total number of routing
tracks) is no grcatcr than 7% m m than that achieved by the maze
router, and in some cases is as little as 3%. Most of this difference is
due to the sub-optimality of dividing the wires up into two point nets.
LocusRoute is markedly fastcr than the mazc router - ranging from 13 to
27 times fastcr. This gain in speed is more than worth the increase in
total density for the end-purpose of integrated placement and routing.

Primary2

For two of our circuits, we can also comparc the total routing
density with the United Technologies global router uscd in the m t
benchmark effort at the 1987 Physical Design Workshop
[PFea87,Robe87]. The placements used above for circuits Primaryl and
Primary2 were also routed by the UT router. Table 3 shows the
comparison of total density for both circuits, with each router using
roughly the same number of vertical hops. The total density of the UT
router for circuit Primaryl is notably less than for the LocusRoute
router. This is probably due to the fact that the UT router also performs
neighbour exchanges and cell orientation changes on the placement in
order to reduce the total number of tracks. The LocusRoute total density
for circuit Primary2 is slightly less than that achieved by the UT router.
We have no information on the execution time of the UT router, except
that for circuits near the size of Primary2, it would take roughly loo00
Vax 11/180 seconds [Robe87].

563 549 3% 3758 48295 13x

Total Density

Primary1

Primary2 3029 560 562

Table 3 - Comparison of LocusRoute and Benchmark Router

In this section several ways of parallelizing the LocusRoute router
arc proposed and implementd

Wire-based Parallelism. Each proassor is given an entire multi-
point wire to route.

Segment-bad Parallelism. Each two-point segment produced by
the Kruskal decomposition can be routed in parallel.

Permutation-based Parallelism. Each of the four possible
permutations. as discussed in Section 4.1, can be evaluated in
parallel.

Route-based Parallelism. Each of the possible two-bend routes for
every permutation can be evaluated in parallcl.

Note that these arc only potential axes of parallelism. It is possible
to eliminate some of them as uneconomical by using statistical run-time
measurements of the sequential router. For example, the number of
two-point segments that actually need to have all four permutations
evaluated is quite small with rcspect to thc total. Thus, pcrmutation-
based parallelism is not going to provide significant speedup and isn't
worth the time it requires to develop. Othcr measurements, however,
show that the time spent evaluating the cost of two-bend routes ranges
from 50 to 90 percent of the total routing time, so that some amount of
spccdup from route-based parallelism can be expected.

The following sections gives the details of tlmc axes of parallelism,
their performance and a quantitative measure of the of degradation in
quality if there is some.

5.1 Wire-Based Parallelism

In Wire-Based parallelism, each multi-point wire is given to a
separate proassor, which runs the LocusRoute routing algorithm as
described in Section 4. Thus, each processor executes the following
"flow" for a diffmnt wire: Prior to decomposition, if the iteration
technique is uscd, the wire must be "ripped up" out of the Cost Array.
Next, each wire is decomposed into two-point nets. and possibly further
into permutations. A subset of the potential two-bend routes is
generated, and then evaluated by traversing the Cost Array. When a
final route is chosen, the Cost Array is updated to reflect the new
presence of that route.

The Cost Array is a shared data structure to which all processors
have read and write acccss. This is an excellent axis of parallelism: if
the sharing of the G x t Array docs not cause performance degradation
due to memory contention, the speedup should simply be thc number of
wires that arc routad in parallel. The resulting parallel answer, however,
will not necessarily be the same as the sequential answer. The problem is
that the sequential router has complete knowledge of all wires that have
already bcen routed, by virtue of their presence in the cost array. The
parallel router has less information because it docsn't sce the wires that
arc being routed simultaneously. The more wires routed in parallel, the
less information each proassor has to choose good routes that avoid
congestion and hcncc the total density increases. Thc total density will
increase as the number of processors increases. The measured effect on
total density is discussed below, in Section 5.1.1.

Paper 14.3
192

An interesting issue is whether or not each procrssor should lock the
Cost Array as it both rips up and re-routes wircs in the Cost Array. Thc
act of ripping up a route is essentially a decrement, and re-routing is an
increment on a cell in the Cost Array. Locking the Cost Array during
these operations (to ensure that two simultaneous operations on the same
element docs not prevent one of the operations from being lost) can
cause a serious performance &gradation. However, the final routing
quality did not &crease when locking was omintd The reason for this
is that the probability of two processors acccssing the same Cost Array
element (of which there arc many) at the same instant is very low. Even
if very few increment or decrement operations arc lost, the effect on final
quality is negligible since only a f tw elements would be wrong by a
small amount

BNRD

Primaryl

5.1 .l WlreBased Parallel Results

156 22 7.0

321 41 6.8

Figure 4 is a plot of the speedup versus number of processors for the
904-wirc (Primaryl) example running on au eight-processor Encore

"AX. ~ h c speedup for p processors, S, is calculated as T 1 T'
where T is the execution time on one processor and T, is the execution
time using p processors. The Encorc uses National 32032 chip sets

which, in our benchmarks, timed out slightly faster than a DEC Micro
vax II. BNRB

BNRA

/

691 92 7.6

878 124 7.1

31 2 /
1 2 3 4 5 6 7 8

Number of Processors

Flgure 4 - Wire-Based Speedup for Circuit Primuiyl

Note that the execution time is only the actual routing computation time,
excluding input time. The "knee" in the curve at five processors occurs
becausc on an eight-processor Encore two processors share one cache.
When five or more processons arc used, pairs of processors interfere with
each other more. For this circuit the increase in total density (between 1
and 8 proccssors) is negligible, and the number of vertical hops increases
about 3%.

Table 4 gives the speedup using eight processors for the other test
circuits. Thc speedup ranges from 5.8 for a smaller circuit to 7.6 for the
largest. The speedup is less for smaller circuits because they arc done in
such a short time, and the startup overhead becomes a factor. The
execution time is for four iterations over all the wircs. It was discovend
that very large global wircs, such as TRUE or FALSE that have up to
150 pins, caused a severe degradation in speedup. This is becaus our
system handles those nets just like MY other, and the O(n 2, nature of the
Kruskal algorithm causes load balancing problems. Since most
production systems treat TRUE and FALSE signal nets differently
(usually tapping directly into the power lines with special cells) thcse
were eliminated under the assumption that they could be handled quickly
that way.

Table 5 gives the &nsity and vertical hop counts for both 1 and 8
processors using wirc-based parallelism. The &gradation in total
density ranges between .7% to 7.6%. The increase in vertical hops is
generally 3% or less, with one exception. In the placement context this
level of &gradation is tolerable, though we have considend two ways of
reducing the problem. The first is to try to ensure that the different
processors only deal with wircs that arc in distinct physical arcas, so that
the wires routed simultaneously do not interac~ This approach was not
implemented bccause in the placement context (with incremental
placement "moves") the wires arc most likely to be in the same area and
Can't be separated.

1;: 1 Lr 1
~ a-r 1 Time (s) Time (s) Speedup

1 BNRC I 221 I 33 I 6.7 I

Table 4 - Wire-Based Parallelism Speedup

The sccond way to d u c e processor interference is not to rip up a
route until the new route is & t e r m i d . In this way there is a much
shorter period of time in which the cost array d a s not contain the
presence of the wirc. Unfortunately. this severely degrades the new
route of the wire itself since it sees thc old copy of itself when new
routes arc being evaluated. Expcrimntally, the &gradation was found
to be bad enough to nullify any gain from the approach.

5.2 Segment-Based Parallellsm

In segment-based parallelism, each two-point segment of a wire is
given to a different processor to route. This is the stage following the
Kruskal &composition, but prior to the evaluation of different two-bend
routes. Measurements of the sequential router showed that about 60% of
the routing time was spent on wires with more than one segment This
means that a speedup of about two might be expected using thrcs
processors. Even though there arc many wires that provi& two or
thru-way parallel tasks, however, the size of those tasks are not
ncccssarily qual. The amount of time taken by the LocusRoute router
to route two points is proportional to the Manhattan distance between the
two points. If, in a thrcc-point win, two of the points arc close together
and the third is far away, it will then take much longer to route one
segment than the other. The processor assigned to the short segment will
be idle while the longer one is being routed. This unequal load prevents
a reasonable speedup. On the ttst circuits a speedup of about 1.1 using
two processors was measud .

Paper 14.3
193

Tabla 5 - Wire-Based Parallelism Quality

It is fairly clear. however, that an extra processor could be assigned
to a number of processors that arc routing different wires. It is likely
that at any given time, one of them will be able to usc the extra processor
to route an extra segment. This technique would become essential in
wire-based parallelism if the number of processors were on the ordcr of
the number of wires. In that case, the load balance would become a
problem becausc wires with many segments take much longer than wires
with few segments. Hence segment-based parallelism could be used as a
method to balance those loads.

ideal

speedup '1,
3

2

1

1 2 3 4 5 6 7 8

Number of Processors

Figure 5 - Route-Based Speedup for Test06

5.3 RoutsBased Parallelism

In route-based parallelism all of the two-bend routes to be evaluated
arc divided among processors. Each finds the lowcst-cost path among the
set of two-bend routes that it is assigned. When all processors finish, the
route with the best overall cost is selected. In this case the processor
loads arc well b a l d becausc the routes arc all of the same length, and
the number of routes is evenly divided among the processors.

Figure 5 is a plot of the speedup versus number of processors for the
It achieves a speedup of 4.6 using 8 circuit Tcst06, a large circuit.

proccssors.

Table 6 gives the best speedup achieved for all of the test circuits,
ranging from 1.2 using 2 processors to 4.6 using 8 processors. The
principal reason for the limitation in speedup is the sequential portion of
the routing: the wim decomposition and the post-route processing that
places the presence of the route into the Cost Array. On the small circuits
that have lesser speedup, the sequential portion is about 50% of the total
routing time, while on the larger circuits which have better spccdup the
sequential portion ranges from 10-1596. Another reason is that some
segments have only one potential route, limiting parallelism.

Circuit Best Route-based Speedup 1 ;= 1 (s p e e d u P ; F I
1.8/3 I
1.613

2.114

2.014

3.6/5, 4.613

primary2 3.315

Table 6 - Performance @Route-Based Parallelism

5.4 Combining Two Axes of Parallelism

The wire-bascd parallel and route-based parallel approaches arc
perfectly orthogonat; hence thcir spccdups should "multiply". Assume,
for a given circuit that a speedup of S, is achieved using *-based
parallelism on W processors, and a speedup of S, is achieved using
route-based parallclism on R processors. Then, because the two
approaches arc orthogonal, the resulting speedup when they are used
together should be S, x S , using W x R processors. This modcl
neglects the effect of memory contention that may occur when the
number of processors is increased dramatically. Table 7 shows the best
predicted speedup for the test circuits. Combined speedup ranges from 7
using 16 processors to 33 using 64 proocssors. The smaller circuits arc
routed very quickly and so it is difficult to get speedups p a t e r than 10
due to the startup overhead. The larger circuits benefit greatly from the
combination of the approaches.

Table 7 also contains the average routing time per net on one
proccssor, A 1, and what thc the average routing time per net would be

under the maximum spc~dup, A ~ . That is, A~=S--LS;. ~ h c

anrage routing times for all circuits, under thc various speedups range
from 5.0ms to Zms, and approaches our goal of one to five milliseconds
per net.

A
w x

Paper 14.3
194

6 References

BNRD

1 MDc 1 5.9 I 1.3 I 7.7
T z -iT; 1 3 8 / s * 0 1

50 5.1

Primary1 9 89 7.2

I BmC 1 6.7 I 1.6 I 10.7
T 3 -zb I 59 l 5 5 1

BNRB 9 127 8.0

BNRA

Table 7 - Predicted Combined Speedup of Wire and Route Parallelism

134 95

5.5 Conclusions

A new global routing algorithm for standard cells and its parallel
implementation has been presented. The LocusRoute algorithm users
significantly fewer tracks than the TimberWolf standard cell global
router, and is comparable to a maze routcr and an industrial router. It i s
more than a factor of 10 faster than either of the two latter routers. Three
axes of orthogonal parallelism were developed to spced up the
LocusRoute router further. Two of the three axcs that were implemented
achieved significant speedup - up to 7.6 using eight processors and 4.6
using eight processors. They should produce combined speedups of up
to 33 times.

In the future, the combined approach will be run on a multiproassor
with more processors. Using a sophisticated scheduling algorithm wc
hope to do bemr than simple multiplication of speedups. The Locus
placement environment is currently being dcvelopcd, and will be
cambined with the LocusRoute global router. Our aim is to achieve
amaller final aren by using the global routing as a be- measure of each
placement.

Acknowledgements

[Akcr72]
S. B. Ake-xa, “Routing” Chapter 6 of Design Automatkm of Digikd
Syskms; Thmry and Techniques, MA. Brcucr, Ed., Englcwood Cliffs, NJ,
Fknticc-Hall, 1972.

T. Blank, M. Stefik, W. VanClccmput, “A Parallel Bit Usp Processor
Architccturt FOR DA ALGORITHMS,” Roc. 18th Design Automation
Combma, June 1981, pp. 837-845.

MA. Bnxcr, “Mm-Cut Placement,” Joumal of Design Automation and
Fault-Tolerant Computing, Oct 197, pp 343-362.

MA Brtucr, K. Shamsa, “A Hardware Router,” Joumal of Digital System,
Vol IV, h u e 4,1981, pp. 393-408.

M HaMn, JM. Kurtzberg, “Placement Tcehniques,” Chapter 4 of Design
Automatbn of Digltal Systems; Theory and Tefhnlques, MA. Brew, Ed,,
NJ, Prcnti~~Hall, 1972.

T. Kambc, T. 0- T. Chih, I. NishioLq “A Global Routing Scheme for
Polyccll LSI,” Roc. ISCAS 1985, pp. 187-190.

J.B. Krulkal, “On The Shortcut Spwning Subha of a graph and the Traveling
Sakaman Problem,” Roc. Amcr. Math. Soc, 7, 1956, pp. 48-50.

C.Y. La, “An Algorithm for Path Connections and Ita Applications,” IRE
Transactions on Eltctronic Computers, Vol E-10, pp 346-365.1961,

R. Neir,‘‘A Simple Yet Effective Technique for Global W~g,” IEEE
Transactiom on Computer-Aided Design, Vol CAD-6, No. 2, March 1987, pp.
165-172.

A P-C Ng, P. Raghavan. C.D. Thompson, “A Language for Describing
Rcetilicar Steiner Trcc Configurations,” Roc. Urd Design Automation
Confmna, June 1986, pp. 659-662.

B.T. P m , “Bcnchmuks for (211-Barcd Layout Systems," Roc. 24d Design
Automation Confcrtna, June 1987, pp. 319-320.

Ken Robntr used the United Technologies Standard Cell global router on the
standard cell benchmaric placements. Results wtrc discussed at the 1987 DAC.

J.S. Rose, WM. Snclgrovc, Z.G. Vrancsi:, “ALTOR An Automatic Standard
(zll Layout Program,” Proc. Canadian confncncc on VLSI, November 1985,

Blan811

prcu771

prcu8lI

w-721

W m b W

-661

W l l

[Nair87]

Bg861

v d 7 1

b a s 7 1

~ o s c 8 5]

pp. 168-173.

J.S. Rose, WM. Snelgrovc, Z.G. Vrancsic, “Parallel Standard Cell Placement
Algorithrm with Quality Equivalent to Simulated Anmaling,” IEEE Trans. on
CAD, Vol. CAD-7, No. 3, March 1988. pp. 387-396.

RA. Rutenbru, T.N. Mudgc, DB. Atkina, “A Class of Cellular Architectures
to Suppmt Physical Deaign Automation,” IEEE Trans. on CAD, Vol. -3,
No. 4, October 1984, pp. 264-278.

C. Sechen, A. Sangiovanni-Vinccntclli, “The Timbcmolf Plaamcnt and

pp. 432439.

b - 1

[SCch85]

Routing Package,” IBPE JSSC, Vol. SC-20. NO. 2, April 1985, pp 510-522.

The author is grateful to Tom Blank who provided many good
suggestions for this papcr. Thanks also to Grant Martin of Bell-Northern
Research for the use of company circuits and to the people involved in
the standard cell benchmark effort for supplying those test circuits. Carl
Sechcn provided version 4.1 of TimberWolfSC.

Paper 14.3
195

