LocusRoute: A Parallel Global Router for Standard Cells

Jonathan Rose
Computer Systems Laboratory
Center for Integrated Systems
Stanford University, Stanford CA 94305

Abstract

A fast and easily parallelizable global routing algorithm for standard
cells and its parallel impl d. LocusRoute is meant
to be used as the cost function for a placement algorithm and so this
context constrains the structure of the global routing algorithm and its
parallel implementation. The router is based on enumerating a subset of
all two-bend routes between two points, and results in 16% to 37% fewer
total number of tracks than the TimberWolf global router for standard
cells {Sech85]. It is comparable in quality to a maze router and an
industrial router, but is factor of 10 times or morc faster. Three
approaches to paralielizing the router are implemented: wire-by-wire
parallelism, secgment-by-segment and route-by-route. Two of these
approaches achicve significant speedup - route-by-route achieves up to
4.6 using eight processors, and wire-by-wire achieves from 5.8 to 7.6 on

eight processors.

itation is p

1 Introduction

The best way to evaluate a given placement of circuit modules is to
route it and determine the final area. Since routing is a time-consuming
task typical placement algorithms [Hana72,Breu77] usc other metrics
such as total wire length or crossing counts that arc casier to calculate.
The advent of usabl s is leading us to
consider using more compute-intensive cost functions if efficient parallel
algorithms can be developed. The aim of the Locus Project is to
integrate placement and routing into onc optimization process, and to do
this by using multiprocessing to increase the speed of the routing.

cial mu'myn

This paper presents the first step in the Locus Project: LocusRoute,
a new global routing algorithm for standard cells, and its parallel
implementation. Our goal is to make the average routing time for one net
close to the time that it takes to recalculate more conventional cost
functions such as that used in the TimberWolf [Sech85] Simulated
Anncaling algorithm. The intention is for the global router to be
invoked to rip-up and re-route wires whose end points have changed
when one or more cells are moved in an iterative improvement
placement scheme. This means that routing time must be about one to
five milliseconds per net on a VAX 11/780-class machine.

The routing performance of LocusRoute, as measured by total
number of routing tracks, is better than that of TimberWolf {Sech85]} and
comparable to a maze router and an industrial router. It is fast because it
investigates only a subset of two-bend routes between pairs of pins to be
routed. The routing speed is increased further by paralielizing the
algorithm in three ways: routing several wires at once, routing several
two-point segments simultancously, and evaluating possible two-bend
routes in parallel. The wire-by-wire parallel approach achieves speedups
ranging from 5.8 to 7.6 using 8 processors. The route-by-route approach
achieves speedups of up to 4.6 using 8 processors. Since these two

" "

axes" of parallelism are orthogonal to cach other, their respective
speedups will multiply.

This paper is organized as follows: Section 2 reviews related work.
Section 3 defines the problem of global routing and gives our routing
model. Section 4 describes the LocusRoute algorithm and compares it to
other routers. Section 5 p three approaches for speeding up the
new router using parallel pr and perfor 1

Bt

2 Related Work

Previous work on parallel routing {Breu81, Blan81, Rute84, and
many others] has generally focused on a fixed hardware mapping for the
Lee routing algorithm {Lec61]. As such they lack the flexibility that is
required in practical CAD software such as the global router described in
[Kamb85]. Another drawback of special hardware for the Lee algorithm
is that a uniprocessor implementation can be made very cfficient using
special software data structures that cannot be put casily into fixed
hardware. A more flexible approach is to use general purpose parallel
processors, which can be adapted to many applications. Using the
flexibility of a gencral purpose multiprocessor, several "axes" of
paralielism can be exploited. If these axes are orthogonal to each other
then when used together they can provide significant speedup. Two
approaches to paralielizing an algorithm are said to be orthogonal if,
when used together, the resulting speedup is the product of the speedup
of the individual methods.

3 Problem Definition and Routing Model

Global routing for standard cells first decides for each group of
clectrically equivalent pins (pin clusters) which of those pins are actually
to be connected. Second, if there is no path between channels when one
is required, it must decide either which built-in feedthrough to use or
where to insert a feedthrough cell. Lastly, it must determine the channel
to use in routing from a pad into the core cells.

In this di of global routing there will be no differentiation
between feedthrough cells and built-in feedthroughs - they are referred to
jointly as vertical hops. The decision to inscrt a feedthrough cell or use
a built-in feedthrough is deferred to a post-processing step. This does
result in some inaccuracy in the track count. However, using this
approximation (and the routing algorithm to be described) the 904-wire
Primary1 circuit from the standard cell benchmark suite [Prea87] global
routed to 249 tracks, using 995 vertical hops. The actual, post-process
track count using 10 feedthrough cells and 985 built-ins was 253, only
1.6% more tracks. For the 3029-wire Primary?2 circuit with 3424 vertical
hops (287 feedthroughs, 3137 built-ins) the approximate track count was
546 and the post-process count was 590, an increase of 8%.

The usual objective of a global router is to minimize the sum of the
channel densities of all the channels (hercafier called the total density).
It is important to note that the total density can be traded off with the
number of vertical hops, so to compare the total density of two global
routings fairly they should both use the same number of vertical hops.

25th ACM/IEEE Design Automation Conference®

CH2540-3/88/0000/0189$01.00 © 1988 |IEEE

Paper 14.3
189

H. v
LI Routing Pin

Charnels f

Vl Chan§
Channeid — o 4 Chans
Channeld = —————a " Chan3
Channel 2 - I Chan2
Channei 1 —_— - Chant

Standard Cell Placement —rerae————u Cost Array Representation

Figure 1 - Routing Model

3.1 Routing Model

All of the routing algorithms discussed here are based on the same
routing model: Each possible routing position in a channel (also called
routing grid of that ch 1) is rep ated as one el of an array as
shown in Figure 1. The array, called the Cost Array, has a vertical

assigns unique numbers to distinct segments of the same wire in
each channel. This is so that a channel router can distinguish
between two segments and will not inadvertently join them together.

5. Wire lay down. The presence of the newly routed wire is put into
the Cost Array by incrementing the array elements where the new
wire resides. Once there, other wires can take it into account.

The details of the second and third steps are described in the following
sections. The first and last two are simple enough that the above
description suffices.

4.1 Decomposition into Permutations

Each two-point segment consists of pairs of pin clusters that contain
clectrically equivalent pins. The LocusRoute algorithm considers routes
between every pin in one cluster and every pin in the other cluster. Each
such route is called a permutation. Figure 2 illustrates three of the four
possible permutations between clusters A and B, which have two pins
each. The four possible permutations are: (A1,B4), (A1,B82), (A2,B)
, (A2,B5). If clusters A and B are scparated by only a short horizontal

dimension of the number of rows plus one, and a horizontal dirr

of the width of the placement in routing grids. Each element of the Cost
Array contains two values: Hy; and Vj;. H;; contains the number of of
wire routes that pass horizontally through the grid at channel i in
position j. V;; is the cost, assigned by parameter, of traversing a row in
travelling from channel i to channel i + 1 at grid position j. A wire is
represented as a list of (i, j) pairs of locations in the Cost Array,
corresponding to the locations of pins to be joined.

The objective is to find a minimum-cost path for each wire. The
wire’s cost is given by the sum of all of the H;; and V;; that it traverses.
After a path is found for a wire that goes through location (i, j) its
presence is recorded in the Cost Array (the appropriate H;; and Vj; are
incremented) so that subsequent wires can take it into account. The
more wires going through a particular location in a channel, the less
likely it is that area will be used. Note that in this model the total
density is not directly minimized, but rather a combination of average
density and wire length.

4 The LocusRoute Algorithm

In this section the uniprocessor LocusRoute algorithm is described,
and a performance comparison with other routers is given. There are
five steps in the LocusRoute global routing algorithm:

1. A multi-point wire is decomposed into two-point segments, using
Kruskal’s algorithm [Krus56]. This algorithm has running time
O(n2) in the number of pin clusters. The effect of the sub-
optimality of this decomposition is discussed in section 4.4 below.

2. The scgments arc further d posed, if y, into

permutations, which are the set of possible routes between each pin
in a pin cluster.

3. A low-cost path in the Cost Array is found for each permutation by
evaluating a subset of the two-bend routes between each pin pair.
The permutation with the best cost is sclected as the route for that
segment.

4. Traceback. This step joins all the ts back together, and

&

Paper 14.3
190

di , then the (A 1, B 3) permutation is most likely the least-cost path
of the four. If the horizontal distance is large then it is possible that any
one of the four permutations could have the low-cost path, and hence all
should be investigated. This has been confirmed experimentally, and a
constant horizontal separation (300 routing grids) has been determined
beyond which total density will improve if all four permutations arc
evaluated.

Standard Cell Rows

l J t Pin Cluster

W — |

l Cluster B]
2

Route Permutation A2 -> B2

Figure 2 - Per ion Decomposition of Segment

4.2 Route Enumeration

The LocusRoute algorithm searches for a low-cost path for a
permutation by enumerating a number of different routes. The idea is to
evaluate the cost of a subset of all two-bend routes between the two pins,
and then choose the one with the lowest cost. Generation of two-bend
routes is discussed in [Ng86]. Figure 3 illustrates three possible two-
bend (or less) routes inside a representation of the Cost Array as a small
example.

If the horizontal distance between the two pins is H routing grids,
and the vertical difference is C channels then the total number of two-
bend routes is C+H. A parameter, called the two bend percent (TBP)
dictates the percentage of the total number possible two-bend routes to

be evaluated. Thus the total number of routes evaluated is given by

IBEx(C +H).

(@) (b) (©

Figure 3 - Sample Two-Bend Routes

The priority order of the routes evaluated (when TBP is less than
100) is as follows: first all principally horizontal routes (those with
bends only at the left and right extremes) are evaluated. Then the
principally vertical routes (those with bends at the upper and lower
extremes) are cvaluated. Horizontal routes are evaluated first because it
is important that all of the potential channels for the route be examined
at least once. Within the horizontal and vertical groups, routes are
searched in bisection order; ic. if the limits of the group span are

normalize to [0,1] then the routes are prioritized as 0,1, 3, 4, 3, &,

and so on.

The two-bend evaluation approach was calibrated against a least-
cost path maze router between the two points. Note that both routers are
not allowed to go beyond the bounding box of the two end points of the
segment. This is different than comparing against a maze router for
multipoint wires since that is a less constrained problem and the maze
router will have more success, as discussed in Section 4.4.
Experimentally, it was determined that a TBP of 20% would result in a
path as good as that found by the maze router, as compared on the basis
of total density for the entire circuit. On all of the test circuits used in
the experiments discussed in the section 4.4, the LocusRoute router’s
total density was within 2% of that obtained by the two-point maze
router, with one exception of 3.3%. Most of the differences were below
1%. This is surprising in that the maze router looks for not only two-
bend routes but for three or more bend routes. It implies that two-bend
routes provide a sufficiently rich route set for the standard cell routing
problem.

4.3 Iteration

The LocusRoute algorithm makes use of a general iterative
technique in the manner described in [Nair87]. Briefly, this means that
after the first time all wires are routed, each is sequentially ripped up
from the Cost Array and then re-routed. By routing each wire several
times (typically four is sufficient), the wire order-dependency is reduced
and the final answer is improved by five to ten percent. Also - of benefit
to the end-purpose of integrated placement and routing - the nature of
iteration is similar to the placement environment in which wires are
ripped up and re-routed many times.

4.4 Uniprocessor Performance Results

This section compares the quality and execution time of LocusRoute
with other routers.

Table 1 shows a comparison between the LocusRoute global router
and the TimberWolf [Sech85) global router for several industrial
circuits. These circuits are from several sources: The standard cell
Benchmark suite (Primaryl, Primary2, Test06 [Prea87]), Bell-Northern
Research Ltd. (BNRA->BNRE), and the University of Toronto
Microelectronic Develop Centre (MDC). The placement for all of
the circuits was done by the ALTOR standard cell placement program
[Rose85, Rosc88). The TimberWolf version used was TimberWolf 4.1,
obtained in July 1987. LocusRoute shows significantly better total
density than does the TimberWolf global router, ranging from 16% to
37% fewer tracks. The principal reason is that the TimberWolf global
router is constrained to use only the minimum number of vertical hops,
whereas LocusRoute uses considerably more. This is a reasonable
practice in current technology because many standard cells contain
"free” built-in feedthroughs. The execution times of LocusRoute and
TimberWolf are comparable for most of the ecxamples, though
TimberWolf is faster by a factor of 8 and 3 respectively for circuits
Test06 and Primary2. This is due to the fact that the LocusRoute
algorithm increases in running time proportional to the arca covered by
the wire, which is much larger in these two circuits.

Circuit # Total Density

Name Wires | Locus | TWolf | % Few

BNRE 420 138 179 22%

MDC 575 150 179 16%
BNRD 774 188 225 16%

Primaryl 904 262 316 17%

BNRC 937 202 247 18%

BNRB 1364 320 442 27%

BNRA 1634 315 432 27%
Test06 1673 335 537 37%

20% |

Table 1 - Comparison of LocusRoute and TimberWolf

Primary2 | 3029 563 702

For comparison purposes a maze router [Lee61] was developed that
exhaustively determines the optimal solution to the two-point routing
problem as defined in Section 3. Note that it uses the same cost
function as the LocusRoute router. It also determines a good
approximation to the minimum-cost Steiner tree for multi-point wires
using the approach described in [Aker72]. The maze router was
carefully optimized for speed. Table 2 shows the comparison of total
density and execution time for the maze router and the LocusRoute
router, for all of the test circuits. The comparison is made on the basis of
roughly equal numbers of vertical hops. Execution times are for four
iterations over all wires on a DEC Micro Vax II

Paper 14.3
191

Circuit Total Density Time (Micro Vax IIs)
Name Locus | Maze | Diff | Locus | Maze

BNRE 138 129 7% 88 2378 27x

Factor

MDC 150 141 6% 178 3173 18x

BNRD 188 182 3% 167 3306 20x
Primary1 262 255 3% 325 6534 20x
BNRC 202 189 7% 363 7250 20x

BNRB 320 308 4% 599 | 15116 25x

BNRA 315 294 7% 769 | 19652 26x

Test06 335 316 6% | 5137 | 92272 18x

Primary2 563 549 3% | 3758 | 48295 13x

Table 2 - Comparison of LocusRoute and Maze Router

For all circuits the LocusRoute total density (total number of routing
tracks) is no greater than 7% more than that achieved by the maze
router, and in some cases is as little as 3%. Most of this difference is
due to the sub-optimality of dividing the wires up into two point nets.
LocusRoute is markedly faster than the maze router - ranging from 13 to
27 times faster. This gain in speed is more than worth the increase in
total density for the end-purpose of integrated placement and routing.

For two of our circuits, we can also compare the total routing
density with the United Technologics global router used in the recent
benchmark effort at the 1987 Physical Design Workshop
[Prea87,Robe87]. The placements used above for circuits Primary! and
Primary2 were also routed by the UT router. Table 3 shows the
comparison of total density for both circuits, with each router using
roughly the same number of vertical hops. The total density of the UT
router for circuit Primaryl is notably less than for the LocusRoute
router. This is probably duc to the fact that the UT router also performs
neighbour exchanges and cell orientation changes on the placement in
order to reduce the total number of tracks. The LocusRoute total density
for circuit Primary?2 is slightly less than that achieved by the UT router.
We have no information on the execution time of the UT router, except
that for circuits near the size of Primary2, it would take roughly 10000
Vax 11/780 seconds [Robe87].

Circuit Name | # Wires Total Density
LocusRoute | Benchmark
Primaryl 904 253 194
Primary2 3029 560 562

Table 3 - Comparison of LocusRoute and Benchmark Router

Paper 14.3
192

5 Parallelization

In this section several ways of parallelizing the LocusRoute router
are proposed and implemented:

1. Wirc-based Parallelism. Each processor is given an entire multi-
point wire to route.

2. Segment-based Paraliclism. Each two-point segment produced by
the Kruskal decomposition can be routed in parallel.

3. Permutation-based Parallelism. Each of the four possible
permutations, as di d in Section 4.1, can bc cvaluated in

| 4

parallel.

4. Route-based Parallelism. Each of the possible two-bend routes for
every permutation can be evaluated in paraliel.

Note that these are only potential axes of paralielism. It is possible
to eliminate some of them as uneconomical by using statistical run-time
measurements of the sequential router. For example, the number of
two-point segments that actually need to have all four permutations
evaluated is quite small with respect to the total. Thus, permutation-
based parallelism is not going to provide significant speedup and isn’t
worth the time it requires to develop. Other measurements, however,
show that the time spent evaluating the cost of two-bend routes ranges
from 50 to 90 percent of the total routing time, so that some amount of
speedup from route-based parallelism can be expected.

The following sections gives the details of three axes of parallelism,
their performance and a quantitative measure of the of degradation in
quality if there is some.

5.1 Wire-Based Paralielism

In Wire-Based parallelism, each multi-point wirc is given to a
separate processor, which runs the LocusRoute routing algorithm as
described in Section 4. Thus, each processor executes the following
"flow" for a different wirc: Prior to decomposition, if the iteration
technique is used, the wire must be "ripped up" out of the Cost Array.
Next, each wire is decomposed into two-point nets, and possibly further
into permutations. A subset of the potential two-bend routes is
generated, and then evaluated by traversing the Cost Array. When a
final route is chosen, the Cost Array is updated to reflect the new
presence of that route.

The Cost Array is a shared data structure to which all processors
have read and write access. This is an excellent axis of parallelism: if
the sharing of the Cost Array does not cause performance degradation
due to memory contention, the speedup should simply be the number of
wires that are routed in parallel. The resulting paraliel answer, however,
will not necessarily be the same as the sequential answer. The problem is
that the sequential router has complete knowledge of all wires that have
already been routed, by virtue of their presence in the cost array. The
parallel router has less information because it doesn't sce the wires that
are being routed simultancously. The more wires routed in parallel, the
less information cach pr has to ch good routes that avoid
congestion and hence the total density increases. The total density will
increase as the ber of pr TS i The d effect on
total density is discussed below, in Section 5.1.1.

An interesting issue is whether or not each processor should lock the
Cost Array as it both rips up and re-routes wires in the Cost Array. The
act of ripping up a route is essentially a decrement, and re-routing is an
increment on a cell in the Cost Array. Locking the Cost Array during
these operations (to ensure that two simultaneous operations on the same
element does not prevent one of the operations from being lost) can
causc a serious performance degradation. However, the final routing
quality did not decrease when locking was omitted. The reason for this
is that the probability of two processors accessing the same Cost Array
element (of which there are many) at the same instant is very low. Even
if very few increment or decrement operations are lost, the cffect on final
quality is negligible since only a few elements would be wrong by a
small amount.

5.1.1 Wire-Based Parallel Results

N

Figure 4 is a plot of the sp p versus of pr s for the
904-wire (Primaryl) example running on am eight-processor Encore

MULTIMAX. The speedup for p processors, S, is calculated as ;.l,
14

where T is the execution time on onc processor and T, is the exccution
time using p processors. The Encore uses National 32032 chip sets
which, in our benchmarks, timed out slightly faster than a DEC Micro
Vax II.
8 —
A ideal
6 —
5
4 _
3
2_|
1

Speedup

I I I I] I |
1 2 3 4 5 6 7 8

Number of Processors
Figure 4 - Wire-Based Speedup for Circuit Primaryl

Note that the execution time is only the actual routing computation time,
excluding input time. The "knee" in the curve at five processors occurs
because on an eight-processor Encore two processors share one cache.
When five or more processors are used, pairs of processors interfere with
each other more. For this circuit the increase in total density (between 1
and 8 processors) is negligible, and the number of vertical hops increases
about 3%.

Table 4 gives the speedup using cight processors for the other test
circuits. The speedup ranges from 5.8 for a smaller circuit to 7.6 for the
largest. The speedup is less for smaller circuits because they are done in
such a short time, and the startup overhcad becomes a factor. The
execution time is for four iterations over all the wires. It was discovered
that very large global wires, such as TRUE or FALSE that have up to
150 pins, caused a severe degradation in speedup. This is b our
system handles those nets just like any other, and the O(n2) nature of the
Kruskal algorithm causes load balancing problems. Since most
production systems treat TRUE and FALSE signal nets differently
(usually tapping directly into the power lines with special cells) these
were climinated under the assumption that they could be handled quickly
that way.

Table 5 gives the density and vertical hop counts for both 1 and 8
processors using wirc-based paraliclism.- The degradation in total
density ranges between .7% to 7.6%. The increase in vertical hops is
generally 3% or less, with one ption. In the pl t this
Ievel of degradation is tolerable, though we have considered two ways of
reducing the problem. The first is to try to ensure that the different
processors only deal with wires that are in distinct physical areas, so that
the wires routed simultaneously do not interact. This approach was not
impl d b in the plac context (with incremental
placcment "moves") the wires are most likely to be in the same arca and

can’t be separated.

Circuit 1-Proc 8-Proc 8-Proc
Name Time (s) | Time (s) | Speedup
BNRE 78 13 58
MDC 88 15 59
BNRD 156 22 7.0
Primary1 321 47 6.8
BNRC 221 33 6.7
BNRB 697 92 7.6
BNRA 878 124 71
Test06 6261 869 72
Primary2 4334 574 7.6

Table 4 - Wire-B

d Parallel;. cr lr

The second way to reduce processor interference is not to rip up a
route until the new route is determined. In this way there is a much
shorter period of time in which the cost array does not contain the
presence of the wire. Unfortunately, this severely degrades the new
route of the wire itself since it sees the old copy of itsclf when new
routes arc being evaluated. Experi ally, the degradation was found
to be bad enough to nullify any gain from the approach.

5.2 Segment-Based Parallelism

In seg -based parallelism, each two-point segment of a wire is
given to a different processor to route. This is the stage following the
Kruskal decomposition, but prior to the evaluation of different two-bend
routes. Measurements of the sequential router showed that about 60% of
the routing time was spent on wires with more than one segment. This
means that a speedup of about two might be expected using three
processors. Even though there are many wires that provide two or
threc-way parallel tasks, however, the size of those tasks are not
necessarily equal. The amount of time taken by the LocusRoute router
to route two points is proportional to the Manhattan distance between the
two points. If, in a three-point wire, two of the points are close together
and the third is far away, it will then take much longer to route one
segment than the other. The processor assigned to the short segment will
be idle while the longer one is being routed. This unequal load prevents
a reasonable speedup. On the test circuits a speedup of about 1.1 using
two processors was measured.

Paper 14.3
193

Circuit Density Vertical Hops
Name 1-Proc | 8-Proc | 1-Proc | 8-Proc
BNRE 129 135 454 470
MDC 134 144 243 243
BNRD 181 185 528 562
Primary1 262 264 934 958
BNRC 193 199 739 749

BNRB 312 326 1897 1953
BNRA 300 311 2103 2154

Test06 325 336 3196 3253

Primary2 560 584 3022 3097

Table 5 - Wire-Based Parallelism Quality

It is fairly clear, however, that an extra processor could be assigned
to a number of processors that are routing different wires. It is likely
that at any given time, one of them will be able to use the extra processor
to route an extra scgment. This technique would become essential in
wire-based parallelism if the number of processors were on the order of
the number of wires. In that case, the load balance would become a
problem because wires with many segments take much longer than wires

with few ts. Hence segment-based parallelism could be used as a
method to balance those loads.
8
A ideal
6 —| measured
Speedup A]
3
2 |
1 T T T T T
1 2 3 4 5 6 7 8
Number of Pr L

Figure 5 - Route-Based Speedup for Test06

5.3 Route-Based Parallelism

In route-based paralielism all of the two-bend routes to be evaluated
are divided among processors. Each finds the lowest-cost path among the
set of two-bend routes that it is assigned. When all processors finish, the
route with the best overall cost is selected. In this case the processor
loads are well balanced because the routes are all of the same length, and
the number of routes is evenly divided among the processors.

Paper 14.3
194

Figure 5 is a plot of the speedup versus ber of pr s for the

circuit Test06, a large circuit. It achieves a speedup of 4.6 using 8
Pprocessors.

Table 6 gives the best speedup achieved for all of the test circuits,
ranging from 1.2 using 2 processors to 4.6 using 8 processors. The
principal reason for the limitation in speedup is the sequential portion of
the routing: the wire decomposition and the post-route processing that
places the presence of the route into the Cost Array. On the small circuits
that have lesser speedup, the scquential portion is about 50% of the total
routing time, while on the larger circuits which have better specdup the
sequential portion ranges from 10-15%. Another reason is that some
segments have only one potential route, limiting parallelism.

Circuit Best Route-based Speedup

Name (Speedup/#Processors)

BNRE 1272

MDC 132

BNRD 1472
Primary1 1.8/3

BNRC 1.6/3

BNRB 2.1/4

BNRA 2.0/4

Test06 3.6/5,4.688
Primary2 3.3/5

Table 6 - Performance of Route-Based Parallelism

5.4 Combining Two Axes of Parallelism

The wire-based parallel and routc-bascd parallel approaches are
perfectly orthogonal; hence their speedups should "multiply”. Assume,
for a given circuit that a speedup of §,, is achieved using wire-based
parallelism on W processors, and a speedup of S, is achieved using
route-based parallelism on R processors. Then, because the two
approaches arc orthogonal, the resulting speedup when they are used
together should be §,,xS, using W xR processors. This model
neglects the effect of memory contention that may occur when the
number of processors is increased dramatically. Table 7 shows the best
predicted speedup for the test circuits. Combined speedup ranges from 7
using 16 processors to 33 using 64 processors. The smaller circuits are
routed very quickly and so it is difficult to get speedups greater than 10
due to the startup overhead. The larger circuits benefit greatly from the
combination of the approaches.

Table 7 also contains the average routing time per net on one
processor, Ay, and what the the average routing time per net would be
. . A
under the maximum speedup, Agw. That is, Agw = —S:;(‘S:— The
average routing times for all circuits, under the various speedups range
from 5.0ms to 28ms, and approaches our goal of one to five milliseconds
per net.

SW r
(ms) | (ms)
58 | 12 7.0
59 | 13 7.7
MDC | 5| g | 3B | 5O
70 | 14 9.8
BNRD | 30 | L4 98 50 | 51
Primary1 | S% | 18 | 122 8 | 72
BNRC | & | 18| 107 | 50 | 55
76 | 2.1 16.0
BNRB | 16 | ZL) 160 | 57 | g
71 | 20 | 142
BNRA | L | 20| M2 | g3 | 9
Tetos | 52| 48| 3 035 | 28
Primary2 | 28 | 32| 2 |35 | 14

Table 7 - Predicted Combined Speedup of Wire and Route Parallelism

5.5 Conclusions

A new global routing algorithm for standard cells and its paralicl
implementation has been presented. The LocusRoute algorithm users
significantly fewer tracks than the TimberWolf standard cell global
router, and is comparable to a maze router and an industrial router. It is
more than a factor of 10 faster than either of the two latter routers. Three
axes of orthogonal parallelism were developed to speed up the
LocusRoute router further. Two of the three axes that were implemented
achieved significant speedup - up to 7.6 using cight processors and 4.6
using eight processors. They should produce combined speedups of up
to 33 times.

In the future, the combined approach will be run on a multiprocessor
with more processors. Using a sophisticated scheduling algorithm we
hope to do better than simple multiplication of speedups. The Locus
placement environment is currently being developed, and will be
combined with the LocusRoute global router. Our aim is to achieve
smaller final arca by using the global routing as a better measure of each
placement.

Acknowledgements

The author is grateful to Tom Blank who provided many good
suggestions for this paper. Thanks also to Grant Martin of Bell-Northern
Rescarch for the use of company circuits and to the people involved in
the standard cell benchmark effort for supplying those test circuits. Carl
Sechen provided version 4.1 of TimberWolfSC.

6 References

[Aker72]
S. B. Akers, ‘‘Routing,” Chapter 6 of Design Automation of Digital
Systems; Theory and Techniques, M.A. Breuer, Ed., Englewood Cliffs, NJ,
Prentice-Hall, 1972.

[Blan81]
T. Blank, M. Stcfik, W. VanCleemput, ‘‘A Paralic] Bit Map Processor
Architecture FOR DA ALGORITHMS,”’ Proc. 18th Design Automation
Conference, Junc 1981, pp. 837-845.

[Breu77)
M.A. Breuer, ‘““‘Min-Cut Placement,”* Joumna! of Design Automation and
Fault-Tolerant Computing, Oct 1977, pp 343-362.

[Breusl]
M.A Breuer, K. Shamsa, ‘A Hardware Router,”” Journal of Digital Systems,
Vol IV, Issue 4, 1981, pp. 393-408.

(Hana72]
M. Hanan, JM. Kurtzberg, ‘‘Placement Techniques,”” Chapter 4 of Design
Automation of Digital Systems; Theory and Techniques, M.A. Breuer, Ed.,
NJ, Prentice-Hall, 1972.

[Kamb85]
T. Kambe, T. Okada, T. Chiba, I. Nishioka, ‘‘A Global Routing Scheme for
Polycell LSL’’ Proc. ISCAS 1985, pp. 187-190.

Krus56}
J.B. Kruskal, “On The Shortest Spanning Subtree of a graph and the Traveling
Salesman Probiem,’* Proc. Amer. Math. Soc, 7, 1956, pp. 48-50.

[Lecb1]
C.Y. Lec, “*An Algorithm for Path C
T i on El ic C

[Nair87]
R. Nair,"A Simple Yet Effective Technique for Global Wiring,”” IEEE
Transactions on Computer-Aided Design, Vol CAD-6, No. 2, March 1987, pp.
165-172.

[Ng86}
A P-C Ng, P. Raghavan, CD. Thompson, ‘A Language for Describing
Rectilincar Steiner Tree Configurations,” Proc. 23rd Design Automation
Conference, June 1986, pp. 659-662.

[Pread?]
B.T. Preas, “Benchmarks for Cell-Based Layout Systems,”” Proc. 24rd Design
Automation Conference, June 1987, pp. 319-320.

[Robe87]
Ken Roberts used the United Technologies Standard Cell global router on the

dard cell benchmark pi Results were discussed at the 1987 DAC.

[Rose85]
1.S. Rose, WM. Snelgrove, Z.G. Vrancsic, ‘‘ALTOR: An Automatic Standard
Cell Layout Program,”’ Proc, Canadian Conft on VLSI, N ber 1985,
pp. 168-173,

[Rosc88]
1.S. Rose, WM. Snelgrove, Z.G. Vranesic, ‘‘Parallel Standard Cell Placement
Algorithms with Quality Equivalent to Simulated Annealing,”” IEEE Trans. on
CAD, Vol. CAD-7, No. 3, March 1988, pp. 387-396.

[Rute84]
R.A. Rutenbar, T.N. Mudge, DE. Atkins, ‘‘A Class of Cellular Architectures
to Support Physical Design Automation,”” IEEE Trans, on CAD, Vol. CAD-3,
No. 4, October 1984, pp. 264-278.

[Sech8S5)
C. Secchen, A. Sangiovanni-Vincentelli, ‘“The Timberwolf Placement and
Routing Package,”” IEEE JSSC, Vol. SC-20, No. 2, April 1985, pp 510-522.
pp. 432-439.

and Its Applications,” IRE
s, Vol EC-10, pp 346-365, 1961.

Paper 14.3
195

