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Abstract 

With the introduction of the IEEE 1076 version of 
VHDL, an excellent industry standard hardware descrip- 
tion language is now available. VHDL is an extremely 
flexible and versatile language. As a consequence, the 
language reference documentation is not sufficient to in- 

An analogy exists to the VHDL language in the area of 
programming languages. With a language such as C or 
Pascal, unless the use of these languages is restricted ac- 
cording to a strict methodology, a team of programmers 
will have severe difficulties during integration of a large 
programming effort. As a result, one of the key charac- 
teristics of an effective software engineering effort is the 
introduction of methodology including: 

sure that models written by one hardware designer will 
be compatable with another’s models. What is reauired 0 Code Sharing; Effective use of Libraries 

is a set of VHDL modelling conventions and standard 
.packages which structure the usage of VHDL modelling 
approaches. This paper will discuss the issues inherent in 
VHDL in regards to model compatability, and will pro- 
pose a number of solutions to this problem. 

0 Standardized Coding Conventions 

0 Proper Documentation of Code 

0 Effective Modularization of Code 

0 Standardization of Coding Practices including han- 
dling of errors and messages 

These good engineering practices are well accepted in the 
software area, but are not as well understood or adopted 
in the hardware modelling area. With a language such as 
VHDL, the use of structured software engineering prac- 
tices is critical in order to insure proper compatability of 

1 Introduction 

VHDL (VHSIC Hardware Description Language)[VHDL86,87] 
has evolved over the last several years into a very ef- 

during simulation. 

fective tool for describing electronic hardware systems. 
The scope of the VHDL language is very wide, allowing 
the description of systems ranging from the microcode 
and architectural levels down to the gate level. As a re- 
sult of this multi-level capability, the VHDL language has 
considerably more flexibility and power than most other 
hardware description languages. For the vast majority 
of hardware designers, this flexibility and power is not 
required, and in fact can result in the creation of mod- 
els that have severe compatability problems when mixed 
during simulation. 

Another motivation for the above practices relates to 
one of the primary requirements which influenced the de- 
velopment of the VHDL language, the need to effectively 
document hardware designs. The VHDL language in this 
context is useful as a mechanism to describe the opera- 
tion of a hardware system, and to allow this information 
to pass from one designer to another, or from one orga- 
nization to another. In this regard, many of the aspects 
mentioned above become even more important. 

From this perspective, it is clear that the VHDL Lan- 
guage Reference Manual is not sufficient to insure the 
creation of compatable and documentation quality mod- 
els. The remainder of this paper will outline the specific 
problems which must be addressed in regards to VHDL 
modelling practices and will propose specific solutions 
and approaches to these problems. 
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2 Model Compatability 

The following sections discuss issues related to insuring 
the compatability between models during simulation. 

2.1 Generic Parameters 

Generic parameters in VHDL allow specific instantiations 
of a model to have different characteristics. The most 
obvious use of this capability relates to timing charac- 
teristics of devices. In a typical design, although the 

-- Nand g a t e  in t e r f ace  with a s i n g l e  propagation 
-- delay f o r  t h e  output po r t  
ENTITY nand-gate I S  

GENERIC (y-prop : TIME); 
PORT (a ,  b : I N  l o g i c ;  

USE standardlogic.ALL; 
END n a n d s a t e ;  

y : OUT l o g i c ) ;  

-- Nor g a t e  in t e r f ace  with input  port  delays,  
-- and d i f f e r e n t  delays on output f o r  r i s i n g  
-- and f a l l i n g  values 
ENTITY n o r s a t e  IS 

GENERIC (a-in,  b-in,  y-f ,  y-t : TIME); 
PORT (a ,  b : I N  l og ic ;  

USE standardlogic.ALL; 
END nand-gat e ; 

y : OUT l o g i c ) ;  

Figure 1: Incompatability between Generic Parameters 

basic function of a nand gate may remain the same for 
all instances of the gate, the timing can change from one 
instance to another. Generics allow the timing associated 
with each gate to be passed as a parameter. 

When many models are combined during simulation, a 
consistent methodology must be used in each model. If 
timing parameters are handled in an inconsistent fashion, 
it may not be possible to effectively back-annotate de- 
lays from the layout of a design. Figure l illustrates this 
problem. In this example, a model of a nand gate and a 

nor gate are shown. Two different conventions were used 
in these models in regards to the information passed as 
generic parameters. In the nand gate, a single generic 
parameter y-prop which represents the propagation de- 
lay associated with the device in all cases was used. In 
the nor gate, several time values were passed; ain and 
b i n  represent input port delays, y-t and y f  represent 
rising and falling propagation delays associated with the 
output port. The problem in this situation is that a back- 
annotation program must provide information that varies 
depending on what model the information is passed to. 
This problem is compounded severely when more than 
two models are used during simulation. 

Other compatability problems can occur when some 
models require more detailed information than others. 
For example, setup and hold time constraints are useful 
generic parameters for models. Unfortunately, if one de- 
signer ignores these values, and another designer includes 
these parameters, the resulting simulation will be limited 
in it’s effectiveness. 

2.2 Constraints 

Behavioral simulators and hardware description languages 
have a significant advantage over older gate level tech- 
nologies by supporting semantic checks as part of the 
hardware model. The following summarizes some of the 
more important checks which can be performed very ef- 
fectively in VHDL: 

0 Setup limits 

0 Hold limits 

b Spike detection 

0 Special timing requirements 

b Invalid data 

It is important that models which are combined during 
simulation consistently handle constraint checks. If this 
rule is not followed, the effectiveness of the simulation 
will be reduced, and in the case of spike detection the 
simulation results can be erroneous. For example, if se- 
lected models suppress pass-through of spikes, but others 
don’t, the results of the simulation can in fact be false. 
Although less severe, the results of a simulation can be 
very misleading if only selected models check setup and 
hold constraints. The designer may falsely assume that 
he has no timing errors in his design, when in fact some 
of his models are just not checking for these constraints. 
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2.3 Unknown Handling 

One of the most difficult but most important aspects of 
writing a behavioral model is the proper handling of un- 
known values during simulation. Experience with sim- 
ulators has shown that the introduction of an unknown 
state is required in order to correctly handle the following 
situations: 

0 Circuit power-up and associated simulator initial- 
ization 

0 Recovery from improper device use, both in timing 
and function 

During circuit power-up, unknown values are required 
in order to accurately predict the state of circuit after the 
power-up sequence is completed. Consider the case of a 
flip-flop; At the end of a power-up sequence, the simula- 
tor must choose to set the flip-flop state as either true or 
false In reality, the state of the flip-flop is indeterminate, 
since the value of the flip-flop will lock in based on the 
current and voltage levels in the actual device which are 
highly dependent on the topology of the device. A more 
accurate reflection of the power-up sequence is to place 
the flip-flop initially into an unknown state, and only af- 
ter a sequence of inputs to the device which force the 
device to a known state are received does the unknown 
value disappear. Proper handling of unknown values in 
models can be a very effective tool in diagnosing hard- 
ware designs, especially for power-up conditions. Should 
a design fail to properly eliminate unknown values during 
this stage of simulation, the designer can expect to see 
indeterministic behavior in the actual circuit. 

A secondary use of unknowns occurs during error re- 
covery. Consider a device which has indeterministic be- 
havior for a given set of inputs. A J-K flip-flop is a good 
example. If both the J and K inputs are held high, the 
state of the device can not be predicted. One approach 
to handling this situation would be to report an error 
to the user, and halt the simulation. This approach is 
not a good one, since it doesn’t give the user the option 
of proceeding with simulation in order to  observe other 
effects in the circuit, and does not allow error propaga- 
tion effects to be observed. An alternative would be to 
arbitrarily choose a true or false value. Here, the user 
may be deceived into believing that the simulation re- 
sults are correct when in fact they may not accurately 
model the behavior of the actual circuit. The best solu- 
tion is to place an unknown state in the flip-flop which 
indicates to the user that the state of the flip-flop has an 
indeterminate value. 

From the standpoint of model compatability, it is crit- 
ical that all models combined during a simulation use 
the conventions in regards to the handling of unknown. 
Clearly, if some models utilize unknowns, and others don’t, 
improper simulation results are possible and at the mini- 
mum, any utility which might have been gained from the 
unknown state will be lost. 

2.4 Naming Conventions 

Good modelling practices dictate that consistent and uni- 
form naming conventions be applied to the development 
of VHDL models. This becomes even more important 
when generic parameters are utilized, especially with re- 
spect to back-annotation of delays from layout. Without 
standardized naming conventions, it may not be possi- 
ble for an automatic back-annotation facility to deposit 
values into the VHDL database. 

Areas of concern are summarized here: 

0 Architectural body names 

0 Port names 

0 Generic parameter names 

Clearly, maintaining a consistent mapping between schematic 
types and architectural bodies will make implementation 
of back-annotation easier. Consistency in generic param- 
eter names makes automation of instantiation of generic 
parameter values possible. Since generic parameters of- 
ten contain information which must ultimately be associ- 
ated with port names, maintaining consistency between 
generic parameter names and port names will improve 
model readability and consistency. 

2.5 Value System 

One of the most controversial aspects of simulation re- 
lates to the value system adoped by the simulator. The 
following summarizes some of the most popular systems: 

0 4 state system: True, False, Unknown, High-Impedance 

0 12 state system: True, False, Unknown: each with 

0 

a strength composed of Strong, Resistive, High- 
Impedance, and Indeterminate 

15 state system: True, False, Unknown; each with 
a strength composed of Force, Strong, Resistive, 
High-Impedance, and Indeterminate 
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Each of these value systems has similarities that can be 
summarized here: 

0 Basic state values of True, False and Unknown 

0 Inclusion of a strength system with 4 or 5 values 

The High-Impedance value associated with the 4-state 
system above is really a strength. The introduction of 
strengths in addition to the basic state values provides 
a convenient mechanism for modelling charge effects as- 
sociated with switch level modelling and simulation. Al- 
though the strengths are not required for TTL and higher 
level simulation, the basic 4-state system can be viewed 
as a subset of the strength based systems. 

Substantial experience has been gained in the use of 
these various value systems and in some cases in the 
mixing of value systems during a single simulation. Un- 
fortunately, when value systems are mixed, significant 
technical challenges emerge including: 

0 Proper mapping from one value system to another 

0 Maintaining reasonable simulation efficiency 

0 Managing the increased complexity related to dis- 
playing simulation results to the user 

0 Managing the increased complexity of models which 
must deal with mixed value systems 

In certain cases, simulation results can be inaccurate due 
to problems related to mapping from one value system 
onto another. In a broad sense, switch level components 
must be isolated in order to insure proper handling of 
charge effects. As a result, it is not possible to embed this 
intelligence in models, but rather the simulator kernel 
must have supplemental processing and data structures 
which reflect these isolated switch level portions of the 
circuit. In VHDL, this supplemental processing violates 
basic premises of the language and are clearly beyond 
the scope of a VHDL model. For this reason, mixing of 
value systems as part of a VHDL simulation introduces 
inaccuracies which result in inaccurate results. 

From the above discussion, it is clear that the adoption 
of a single standard value system is highly advantageous 
as it eliminates the problems inherent in mixing such 
systems. Since only a minimal efficiency penalty is as- 
sociated with the choice of a value system in VHDL, a 
superset of the most popular and effective value systems 
is prudent. For the reason, later sections will discuss the 
incorporate of the state system discussed above as part 
of a standard VHDL package. 

3 The Solution 
The solution to  the problems outlined in previous sec- 
tions can be addressed in the following ways: 

0 Provide a set of standards and conventions 
which limit the ways in which VHDL is used for 
typical hardware modelling tasks 

0 Provide one or more standard logic modelling 
packages which give the hardware modeller a frame- 
work and set of utilities which form a structured 
environment for model development 

0 Provide standard VHDL libraries of models which 
represent the more commonly used devices and parts 

3.1 Modelling Standards/ Convent ions 

Modelling standards are critical to the success of a stan- 
dard library. A number of issues emerge when developing 
VHDL models for use by a range of users: 

Model Value Systems - without standardization, 
models may use different value systems. The net 
result of this is the inability to mix models effi- 
ciently or accurately during simulation. For exam- 
ple, if one model handles high-impedance but an- 
other model does not, the overall simulation results 
will suffer and in certain cases may not accurately 
reflect the behavior of the hardware. 

0 Incompatable Generic Parameters - generic 
parameters are most useful for back-annotation of 
timing and delays from layout. Unless all models in 

a library adhere to a common naming convention 
for generic parameters, an identical unit system for 
delays and consistent types of timing values, it will 
not be possible to back-annotate timing informa- 
tion. 

0 Inconsistent Handling of Exceptions - unless 
all models handle setup errors, hold errors and spike 
detection in a similar fashion, the usefulness of sim- 
ulation will be affected. The important point here 
is that the user must have predictable and well doc- 
umented simulation results and unless the excep- 
tion handling in all models in consistent this won't 
be the case. 

0 Documentation Standards - for readability of 
models, the naming conventions, comment stan- 
dards, and other related information should be con- 
sistent. 
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A VHDL Modelling Standards Guideline should estab- 
lish conventions in the following areas: 

naming conventions regarding port names, model 
names, symbol names 

documentation standards regarding comments, sig- 
nal names, algorithms, etc 

conventions regarding generic parameters for com- 
patability with symbol timing attributes used in 
back-annotation from layout 

standard value systems 

standard bus resolution functions 

standard approaches to representing data abstrac- 
tion 

0 standard modelling levels and associated conven- 
tions, i.e. ASICs, boards, systems, standard parts 

3.2 Standard Packages 

A standard logic modelling package has the potential to 
provide an excellent framework for VHDL model develop- 
ment and when combined with the previously mentioned 
modelling standards guideline can be effective in insuring 
compatability during simulation. 

In this paper, a minimal set definitions will be pro- 
posed for this standard logic modelling package. Fig- 
ure 2 shows the package declaration along with the type 
definitions for the package. A type t l o g i c  is defined 
which represents the basic value system for logic level 
signals. Three values, true, false and unknown are used; 
five strengths, force, strong, resistive, high impedance, 
and indeterminate are used. In addition, state quali- 
fiers are used to handle special unknown situations for 
switch level modelling. Thes special qualifiers allow the 
simulation to avoid overly pessimistic results when un- 
known values are fed to transmission gate primitives. 
The types tstate and t s t rength  are defined in or- 
der to allow efficient handling of model logic as demon- 
strated later. An array type is defined for bus resolution 
tlogic-vector along with the associated bus resolution 
function flogic-bus. A subtype which is associated with 
the bus resolution function t-wlogic and an array version 
of it t-wlogic-bus are also declared. 

Several utility functions are provided as shown in figure 
3. f s t a t e  and f s t rength  return the associated state 
and strength respectively of a given signal value. The 
f-qualifier function returns the special value qualifer if it 
exists for a given value. Additional functions f log ic  and 

PACKAGE standardlogic IS 
TYPE t - l o g i c  IS ( 

U, 
zo ,z1 ,zx, 
wo,wl,qwoo,qwox,qwll,qwlx,qwxx,wx, 
RO,R1,~ROO,~ROX,~R11,~R1X,~~X,RX, 
FO,Fl,qF00,~FOX,qFll,~FlX,qFXX,FX 
1; 

TYPE t - s ta te  IS (lO1,’ll,lX1,lU’>; 
TYPE t-strength IS (’Z1,’W1,lR’,lF1,’U1); 

TYPE t-logic-vector IS ARRAY (POSITIVE RANGE 0) OF 

FUNCTION f -logic-bus(s : t-logic-vector) 
t - logic  ; 

RETURN t -1ogi c ; 
-- bus resolution function 

SUBTYPE t-wlogic IS f-logic-bus t - log ic ;  

TYPE t-wlogic-bus IS ARRAY (POSITIVE RANGE 0) OF 
-- wired signal data type 

t-wlogic; 
-- wired signal vector data type 

Figure 2: Standard Logic Modelling Package 

FUNCTION f -state(1v : IN t-wlogic) RETURN t - s ta te ;  
-- return s t a t e  given log ic  value 

FUNCTION f-strength(1v : IN t-wlogic) RETURN t-strength; 
-- return strength given log ic  value 

FUNCTION f -quali f ier(1v : IN t-wlogic) RETURN t - s t a t e ;  
-- return bus resolution qua l i f i er  given log ic  value 

-- LOGIC VALUE BUILDING FUNCTIONS 
FUNCTION f - logic(1vstate  : IN t - s ta te ;  

lvstrength : IN t-strength) RETURN t-wlogic; 
-- return log ic  value given state/strength 

lvstrength : IN t-strength; 
lvqua l i f i er  : IN t - s ta te )  
RETURN t -wlogic ; 
-- return log ic  value given state/strength/qualifier 

FUNCTION f-logicq(1vstate : IN t - s ta te ;  

Figure 3: Utility Functions 

f log icq  are used to construct logic values given states 
and strengths. 

A set of basic logic functions is provided in figure 4. 
Each of these routines performs a logic function such as 
NOT, AND, etc. 
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In order to effectively handle timing calculations, the 
routine shown in figure 5 is provided. The fassign func- 
tion calculates the delay associated with a signal assign- 
ment and performs the signal assignment. This routine 
provides a basis for handling a wide range of technol- 
ogy dependent issues. In particular, an input delay as 
well as rising and falling output delays are utilized dur- 
ing the calculation. If these values are provided by a 
back-annotation facility, accurate processing of the tim- 
ing related to individual traces of a layout can be taken 
into account. 

3.3 Standard Libraries 

Standard libraries provide an excellent basis for getting 
hardware designers started. They provide good exam- 
ples of how models should be developed, they give the 
engineer a critical mass for starting use of VHDL, and 
they allow leverage of engineering effort by avoiding du- 
plicated VHDL modelling efforts. 

Important candidates for standard libraries include: 

0 ASIC macro libraries 

0 standard board level component libraries 

In the previous section, a standard logic modelling pack- 
age was summarized. In this section, a specific example 
which utilizes this package will be shown. 

-- 
FUNCTION f -not(a : IN t - s ta te )  RETURN t - s ta te ;  

FUNCTION f-and(a,b : IN t - s ta te )  RETURN t - s ta te ;  

FUNCTION f -or(a,b : IN t - s ta te )  RETURN t - s ta te ;  

FUNCTION f-nand(a,b : IN t - s ta te )  RETURN t - s ta te ;  

FUNCTION f-nor(a,b : IN t - s ta te )  RETURN t - s ta te ;  

FUNCTION f-xor(a,b : IN t - s ta te )  RETURN t - s ta te ;  

-- return log ic  NOT of given value 

-- return log ic  AND of given values 

-- return l o g i c  OR of given values 

-- return log ic  NAND of given values 

-- return log ic  NOR of given values 

-- return log ic  XOR of given values 

Figure 4: Logic Functions 

FUNCTION f -choosedelay(newal : IN t-wlogic; 
indel ,  out-f ,  out-t : IN TIME) RETURN TIME; 

PROCEDURE f-assign(newstate : IN t - s ta te ;  
SIGNAL s i g  : INOUT l og ic ;  
in-delay, out-f , out-t : IN TIME) ; 

END standardlogic ; 

Figure 5:  Delay Functions 

Figure 6 shows the VHDL model for a nand gate. The 
generic parameters support the passing of a separate d e  
lay for each input port, and both rising and falling delays 
for the output port. 

Figure 7 shows the declarations for a JK flip-flop. Once - ~~ 

again, each input has a delay associated with it, and each 
output has both a rising and a falling delay. Notice also, 
that for this model, the clock input has a setup and hold 
delay associated with it. 

-- BASIC LOGIC OPERATION FUNCTIONS 
FUNCTION f - tech(1vstate:  IN t - s ta te ;  t : IN t-technolog 

RETURN t -wlogic ; 
-- return a l o g i c  value given a s ta te  expression. 
-- This function i s  used i n  conjunction with the 
-- fo l lov ing  log ic  operation functions t o  return an 
-- expression value. For example: -- 
-- NMOS nand gate:  
-- 
-- TIz and/or: 
-- f -tech(f-and(f-or(f -state(a)  , f - s ta te (b ) ) ,  
-- f -or(f-state(c)  , f -state(d)))  , t t l >  

f -tech(f -nand(f -state(a) ,f -state(b)) ,nmos) 

Figure 8 shows the main body of the flip-flop model, 
and outlines how exceptions are handled in this model. 
Of particular interest are the VHDL assertions which test 
for setup and hold errors. Also of interest is the asyn- 
chronous clear process. 

Figure 9 shows the remainder of the model. A single 
process is used to handle clocked inputs to the model. 
Once again, the assign routine is used to perform the 
delay calculations and the signal assignments to the out- 
put. 

ENTITY nand-gate 1s 
GENERIC (a-in,  b-in,  y-f ,  Y - t  : TIME); 
PORT (a ,  b : IN l og ic ;  

USE standardlogic.ALL; 
END nand-gat e ; 

y : OUT l o g i c ) ;  
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ARCHITECTURE behavioral OF nand-gate IS 
BEGIN 
-- main process for handling device output 
PROCESS (a b) 
BEGIN 
-- assign output, a input changed 
IF NOT a’STABLE THEN 
f-assign(f-nand(f-state(a) .f-state(b)), 

y , a-in,y-f ,y-t) ; 
END IF; 

-- assign output, b input changed 
IF NOT b’STABLE THEN 
f -assign(f -nand(f -state (a) , f -state (b) ) , 

y , b-in, y-f ,y-t) ; 
END IF; 
END PROCESS; 

END behavioral ; 

Figure 6: Nand Gate Model 

ENTITY jkff IS 
GENERIC (clr-in, clk-in, q f ,  q-t, qb-f, qb-t, 

PORT (clr, clk, j, k : IN logic; 
q, qb : O U T  logic); 

USE standardlogic.ALL; 
END jkff; 

clk-setup, clk-hold : TIME); 

Figure 7: JKFF Declarations 

Both of these models are considerably more complex 
than might at first appear necessary. Both models in- 
clude the following capabilities: 

0 Accurate Handling of Timing - in both cases, 
these models are sophisticated enough to handle 
back-annotated segment delays which can differ from 
one input port to another. 

Full Constraint Checking - this includes proper 
handling of spike suppression, and hold and setup 
checks. 

Standardized Value System - both models uti- 
lize a standard value system. 

0 Standardized Generic Parameters - both mod- 
els have employed a standardized approach to nam- 
ing generic parameters, and both have all the re- 
quired parameters to allow effective automatic back- 
annotation of delays from layout. 

As a result, these models will be very effective when com- 
bined during simulation. 

ARCHITECTURE behavioral OF jkff IS 
BEGIN 
-- assertion to check for setup errors 
ASSERT (clk’EVENT) AND 

(f-state(c1k) = ’1’) AND 
((NOT j’STABLE(clk-setup)) OR 
(NOT k’STABLE(c1k-setup))) 

REPORT “Setup error”; 

-- assertion to check for hold errors 
ASSERT (j ’EVENT) AND (NOT clk’STABLE(clk_hold)) 

ASSERT (k’EVENT) AND (NOT clk’STABLE(c1k-hold) ) 
REPORT “Hold error“; 

REPORT “Hold error”; 

-- process to handle asynchronous clear 
PROCESS (clr) 
BEGIN 
IF f-state(c1r) = ’0’ THEN 
f ,assign( 0 ’ , q,clr,in ,q-f ,q-t) ; 
f-assign(’l’,qb,clr-in,qb-f ,qb-t); 

END IF; 
END PROCESS; 

Figure 8: JKFF Exception Handling 

-- process to handle clocked input 
PROCESS (clk) 
BEGIN 
-- check for a down transition in clock 
IF f-state(c1k) = ’0’ THEN 

-- watch out for unknown inputs 
IF Cf-state(j) = ’ X ’ )  OR (f-state(k) = ’ X J )  THEN 
f-assign(’X’,q,clk_in,q-f,q-t); 
f -assign( ’ X ’ ,qb, clk-in ,qb-f ,qb-t) ; 

-- calculate the next output state 
ELSE 
CASE f-state(j> IS 
WHEN ’0’ => 
CASE f,state(k) IS 
WHEN ’0’ => -- do nothing 
WHEN ’1’ => 
f-assign( ’0’ ,q,clk-in,q-f ,set) ; 
f -assign( ’ 1’ ,qb,clk-in,qb-f ,qb-t) ; 

END CASE; 
WHEN ’I’ => 
CASE f-state(k) IS 
WHEN ’0’ => 

f-assign(’l’,q,clk-in,q-f ,q-t>; 
f-assign(’O’,qb,clk-in,qb-f ,qb-t); 

WHEN ’I’ => 
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f-assign(f-state(f-not (f-state(q) 11, 
q,clk-in,q-f .q-t) ; 

f-assign(f_state(f_not(f-state(qb))) I 

qb, clk-in, qb-f .qb-t) ; 

[COEL87] D.Coelho, D.Hi11, “Multi-Level Simulation 
for VLSI Design”, Kluwer Academic Publishers, 1987 

[VHDL86] IEEE, “VHDL Language Reference Man- 

ual”, Draft Standard 1076/A, December 31, 1986. 
END CASE; 

END CASE; 
END IF ;  

END IF; 
END PROCESS; 

END behavioral; 

Figure 9: JKFF Clocked Input 

4 Conclusion 

Experience with VHDL and other related languages such 
as HHDL[COEL83,85] and ADLIB[COEL87] have clearly 
demonstrated that without a set of modelling guidelines 
and standard packages, a wide variance in coding quality 
and compatability will exist from one designer to another. 
For this reason, a standard logic modelling package and 
associated guidelines are proposed. Although this pack- 
age is primarily targeted at logic and functional mod- 
elling problems, this area does represent the vast ma- 
jority of usages for HDL’s and is the area which most 
critically needs standardization. 

By leveraging existing knowledge in the development 
of behavioral models, a standard VHDL package such as 
the one proposed in this paper can be thought of as a 
knowledge base from which other designers can learn 
and leverage. Further, VHDL users will experience an 
increase in productivity by following standard practices 
and utilizing a standard package. 
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