
VHDL: A Call for
Standards
David R. Coelho

Vantage Analysis Systems, Inc.
Fremont, California 94538

Abstract

With the introduction of the IEEE 1076 version of
VHDL, an excellent industry standard hardware descrip-
tion language is now available. VHDL is an extremely
flexible and versatile language. As a consequence, the
language reference documentation is not sufficient to in-

An analogy exists to the VHDL language in the area of
programming languages. With a language such as C or
Pascal, unless the use of these languages is restricted ac-
cording to a strict methodology, a team of programmers
will have severe difficulties during integration of a large
programming effort. As a result, one of the key charac-
teristics of an effective software engineering effort is the
introduction of methodology including:

sure that models written by one hardware designer will
be compatable with another’s models. What is reauired 0 Code Sharing; Effective use of Libraries

is a set of VHDL modelling conventions and standard
.packages which structure the usage of VHDL modelling
approaches. This paper will discuss the issues inherent in
VHDL in regards to model compatability, and will pro-
pose a number of solutions to this problem.

0 Standardized Coding Conventions

0 Proper Documentation of Code

0 Effective Modularization of Code

0 Standardization of Coding Practices including han-
dling of errors and messages

These good engineering practices are well accepted in the
software area, but are not as well understood or adopted
in the hardware modelling area. With a language such as
VHDL, the use of structured software engineering prac-
tices is critical in order to insure proper compatability of

1 Introduction

VHDL (VHSIC Hardware Description Language)[VHDL86,87]
has evolved over the last several years into a very ef-

during simulation.

fective tool for describing electronic hardware systems.
The scope of the VHDL language is very wide, allowing
the description of systems ranging from the microcode
and architectural levels down to the gate level. As a re-
sult of this multi-level capability, the VHDL language has
considerably more flexibility and power than most other
hardware description languages. For the vast majority
of hardware designers, this flexibility and power is not
required, and in fact can result in the creation of mod-
els that have severe compatability problems when mixed
during simulation.

Another motivation for the above practices relates to
one of the primary requirements which influenced the de-
velopment of the VHDL language, the need to effectively
document hardware designs. The VHDL language in this
context is useful as a mechanism to describe the opera-
tion of a hardware system, and to allow this information
to pass from one designer to another, or from one orga-
nization to another. In this regard, many of the aspects
mentioned above become even more important.

From this perspective, it is clear that the VHDL Lan-
guage Reference Manual is not sufficient to insure the
creation of compatable and documentation quality mod-
els. The remainder of this paper will outline the specific
problems which must be addressed in regards to VHDL
modelling practices and will propose specific solutions
and approaches to these problems.

25th ACM/IEEE Design Automation Conference@
Paper 4.3
40 CH2540-3/88/0000/0040$01 .OO 0 1988 IEEE

2 Model Compatability

The following sections discuss issues related to insuring
the compatability between models during simulation.

2.1 Generic Parameters

Generic parameters in VHDL allow specific instantiations
of a model to have different characteristics. The most
obvious use of this capability relates to timing charac-
teristics of devices. In a typical design, although the

-- Nand g a t e in t e r f ace with a s i n g l e propagation
-- delay f o r t h e output po r t
ENTITY nand-gate I S

GENERIC (y-prop : TIME);
PORT (a , b : I N l o g i c ;

USE standardlogic.ALL;
END n a n d s a t e ;

y : OUT l o g i c) ;

-- Nor g a t e in t e r f ace with input port delays,
-- and d i f f e r e n t delays on output f o r r i s i n g
-- and f a l l i n g values
ENTITY n o r s a t e IS

GENERIC (a-in, b-in, y-f , y-t : TIME);
PORT (a , b : I N l og ic ;

USE standardlogic.ALL;
END nand-gat e ;

y : OUT l o g i c) ;

Figure 1: Incompatability between Generic Parameters

basic function of a nand gate may remain the same for
all instances of the gate, the timing can change from one
instance to another. Generics allow the timing associated
with each gate to be passed as a parameter.

When many models are combined during simulation, a
consistent methodology must be used in each model. If
timing parameters are handled in an inconsistent fashion,
it may not be possible to effectively back-annotate de-
lays from the layout of a design. Figure l illustrates this
problem. In this example, a model of a nand gate and a

nor gate are shown. Two different conventions were used
in these models in regards to the information passed as
generic parameters. In the nand gate, a single generic
parameter y-prop which represents the propagation de-
lay associated with the device in all cases was used. In
the nor gate, several time values were passed; ain and
b i n represent input port delays, y-t and y f represent
rising and falling propagation delays associated with the
output port. The problem in this situation is that a back-
annotation program must provide information that varies
depending on what model the information is passed to.
This problem is compounded severely when more than
two models are used during simulation.

Other compatability problems can occur when some
models require more detailed information than others.
For example, setup and hold time constraints are useful
generic parameters for models. Unfortunately, if one de-
signer ignores these values, and another designer includes
these parameters, the resulting simulation will be limited
in it’s effectiveness.

2.2 Constraints

Behavioral simulators and hardware description languages
have a significant advantage over older gate level tech-
nologies by supporting semantic checks as part of the
hardware model. The following summarizes some of the
more important checks which can be performed very ef-
fectively in VHDL:

0 Setup limits

0 Hold limits

b Spike detection

0 Special timing requirements

b Invalid data

It is important that models which are combined during
simulation consistently handle constraint checks. If this
rule is not followed, the effectiveness of the simulation
will be reduced, and in the case of spike detection the
simulation results can be erroneous. For example, if se-
lected models suppress pass-through of spikes, but others
don’t, the results of the simulation can in fact be false.
Although less severe, the results of a simulation can be
very misleading if only selected models check setup and
hold constraints. The designer may falsely assume that
he has no timing errors in his design, when in fact some
of his models are just not checking for these constraints.

Paper 4.3
41

2.3 Unknown Handling

One of the most difficult but most important aspects of
writing a behavioral model is the proper handling of un-
known values during simulation. Experience with sim-
ulators has shown that the introduction of an unknown
state is required in order to correctly handle the following
situations:

0 Circuit power-up and associated simulator initial-
ization

0 Recovery from improper device use, both in timing
and function

During circuit power-up, unknown values are required
in order to accurately predict the state of circuit after the
power-up sequence is completed. Consider the case of a
flip-flop; At the end of a power-up sequence, the simula-
tor must choose to set the flip-flop state as either true or
false In reality, the state of the flip-flop is indeterminate,
since the value of the flip-flop will lock in based on the
current and voltage levels in the actual device which are
highly dependent on the topology of the device. A more
accurate reflection of the power-up sequence is to place
the flip-flop initially into an unknown state, and only af-
ter a sequence of inputs to the device which force the
device to a known state are received does the unknown
value disappear. Proper handling of unknown values in
models can be a very effective tool in diagnosing hard-
ware designs, especially for power-up conditions. Should
a design fail to properly eliminate unknown values during
this stage of simulation, the designer can expect to see
indeterministic behavior in the actual circuit.

A secondary use of unknowns occurs during error re-
covery. Consider a device which has indeterministic be-
havior for a given set of inputs. A J-K flip-flop is a good
example. If both the J and K inputs are held high, the
state of the device can not be predicted. One approach
to handling this situation would be to report an error
to the user, and halt the simulation. This approach is
not a good one, since it doesn’t give the user the option
of proceeding with simulation in order to observe other
effects in the circuit, and does not allow error propaga-
tion effects to be observed. An alternative would be to
arbitrarily choose a true or false value. Here, the user
may be deceived into believing that the simulation re-
sults are correct when in fact they may not accurately
model the behavior of the actual circuit. The best solu-
tion is to place an unknown state in the flip-flop which
indicates to the user that the state of the flip-flop has an
indeterminate value.

From the standpoint of model compatability, it is crit-
ical that all models combined during a simulation use
the conventions in regards to the handling of unknown.
Clearly, if some models utilize unknowns, and others don’t,
improper simulation results are possible and at the mini-
mum, any utility which might have been gained from the
unknown state will be lost.

2.4 Naming Conventions

Good modelling practices dictate that consistent and uni-
form naming conventions be applied to the development
of VHDL models. This becomes even more important
when generic parameters are utilized, especially with re-
spect to back-annotation of delays from layout. Without
standardized naming conventions, it may not be possi-
ble for an automatic back-annotation facility to deposit
values into the VHDL database.

Areas of concern are summarized here:

0 Architectural body names

0 Port names

0 Generic parameter names

Clearly, maintaining a consistent mapping between schematic
types and architectural bodies will make implementation
of back-annotation easier. Consistency in generic param-
eter names makes automation of instantiation of generic
parameter values possible. Since generic parameters of-
ten contain information which must ultimately be associ-
ated with port names, maintaining consistency between
generic parameter names and port names will improve
model readability and consistency.

2.5 Value System

One of the most controversial aspects of simulation re-
lates to the value system adoped by the simulator. The
following summarizes some of the most popular systems:

0 4 state system: True, False, Unknown, High-Impedance

0 12 state system: True, False, Unknown: each with

0

a strength composed of Strong, Resistive, High-
Impedance, and Indeterminate

15 state system: True, False, Unknown; each with
a strength composed of Force, Strong, Resistive,
High-Impedance, and Indeterminate

Paper 4.3
42

Each of these value systems has similarities that can be
summarized here:

0 Basic state values of True, False and Unknown

0 Inclusion of a strength system with 4 or 5 values

The High-Impedance value associated with the 4-state
system above is really a strength. The introduction of
strengths in addition to the basic state values provides
a convenient mechanism for modelling charge effects as-
sociated with switch level modelling and simulation. Al-
though the strengths are not required for TTL and higher
level simulation, the basic 4-state system can be viewed
as a subset of the strength based systems.

Substantial experience has been gained in the use of
these various value systems and in some cases in the
mixing of value systems during a single simulation. Un-
fortunately, when value systems are mixed, significant
technical challenges emerge including:

0 Proper mapping from one value system to another

0 Maintaining reasonable simulation efficiency

0 Managing the increased complexity related to dis-
playing simulation results to the user

0 Managing the increased complexity of models which
must deal with mixed value systems

In certain cases, simulation results can be inaccurate due
to problems related to mapping from one value system
onto another. In a broad sense, switch level components
must be isolated in order to insure proper handling of
charge effects. As a result, it is not possible to embed this
intelligence in models, but rather the simulator kernel
must have supplemental processing and data structures
which reflect these isolated switch level portions of the
circuit. In VHDL, this supplemental processing violates
basic premises of the language and are clearly beyond
the scope of a VHDL model. For this reason, mixing of
value systems as part of a VHDL simulation introduces
inaccuracies which result in inaccurate results.

From the above discussion, it is clear that the adoption
of a single standard value system is highly advantageous
as it eliminates the problems inherent in mixing such
systems. Since only a minimal efficiency penalty is as-
sociated with the choice of a value system in VHDL, a
superset of the most popular and effective value systems
is prudent. For the reason, later sections will discuss the
incorporate of the state system discussed above as part
of a standard VHDL package.

3 The Solution
The solution to the problems outlined in previous sec-
tions can be addressed in the following ways:

0 Provide a set of standards and conventions
which limit the ways in which VHDL is used for
typical hardware modelling tasks

0 Provide one or more standard logic modelling
packages which give the hardware modeller a frame-
work and set of utilities which form a structured
environment for model development

0 Provide standard VHDL libraries of models which
represent the more commonly used devices and parts

3.1 Modelling Standards/ Convent ions

Modelling standards are critical to the success of a stan-
dard library. A number of issues emerge when developing
VHDL models for use by a range of users:

Model Value Systems - without standardization,
models may use different value systems. The net
result of this is the inability to mix models effi-
ciently or accurately during simulation. For exam-
ple, if one model handles high-impedance but an-
other model does not, the overall simulation results
will suffer and in certain cases may not accurately
reflect the behavior of the hardware.

0 Incompatable Generic Parameters - generic
parameters are most useful for back-annotation of
timing and delays from layout. Unless all models in

a library adhere to a common naming convention
for generic parameters, an identical unit system for
delays and consistent types of timing values, it will
not be possible to back-annotate timing informa-
tion.

0 Inconsistent Handling of Exceptions - unless
all models handle setup errors, hold errors and spike
detection in a similar fashion, the usefulness of sim-
ulation will be affected. The important point here
is that the user must have predictable and well doc-
umented simulation results and unless the excep-
tion handling in all models in consistent this won't
be the case.

0 Documentation Standards - for readability of
models, the naming conventions, comment stan-
dards, and other related information should be con-
sistent.

Paper 4.3
43

A VHDL Modelling Standards Guideline should estab-
lish conventions in the following areas:

naming conventions regarding port names, model
names, symbol names

documentation standards regarding comments, sig-
nal names, algorithms, etc

conventions regarding generic parameters for com-
patability with symbol timing attributes used in
back-annotation from layout

standard value systems

standard bus resolution functions

standard approaches to representing data abstrac-
tion

0 standard modelling levels and associated conven-
tions, i.e. ASICs, boards, systems, standard parts

3.2 Standard Packages

A standard logic modelling package has the potential to
provide an excellent framework for VHDL model develop-
ment and when combined with the previously mentioned
modelling standards guideline can be effective in insuring
compatability during simulation.

In this paper, a minimal set definitions will be pro-
posed for this standard logic modelling package. Fig-
ure 2 shows the package declaration along with the type
definitions for the package. A type t l o g i c is defined
which represents the basic value system for logic level
signals. Three values, true, false and unknown are used;
five strengths, force, strong, resistive, high impedance,
and indeterminate are used. In addition, state quali-
fiers are used to handle special unknown situations for
switch level modelling. Thes special qualifiers allow the
simulation to avoid overly pessimistic results when un-
known values are fed to transmission gate primitives.
The types tstate and t s t rength are defined in or-
der to allow efficient handling of model logic as demon-
strated later. An array type is defined for bus resolution
tlogic-vector along with the associated bus resolution
function flogic-bus. A subtype which is associated with
the bus resolution function t-wlogic and an array version
of it t-wlogic-bus are also declared.

Several utility functions are provided as shown in figure
3. f s t a t e and f s t rength return the associated state
and strength respectively of a given signal value. The
f-qualifier function returns the special value qualifer if it
exists for a given value. Additional functions f log ic and

PACKAGE standardlogic IS
TYPE t - l o g i c IS (

U,
zo ,z1 ,zx,
wo,wl,qwoo,qwox,qwll,qwlx,qwxx,wx,
RO,R1,~ROO,~ROX,~R11,~R1X,~~X,RX,
FO,Fl,qF00,~FOX,qFll,~FlX,qFXX,FX
1;

TYPE t - s ta te IS (lO1,’ll,lX1,lU’>;
TYPE t-strength IS (’Z1,’W1,lR’,lF1,’U1);

TYPE t-logic-vector IS ARRAY (POSITIVE RANGE 0) OF

FUNCTION f -logic-bus(s : t-logic-vector)
t - logic ;

RETURN t -1ogi c ;
-- bus resolution function

SUBTYPE t-wlogic IS f-logic-bus t - log ic ;

TYPE t-wlogic-bus IS ARRAY (POSITIVE RANGE 0) OF
-- wired signal data type

t-wlogic;
-- wired signal vector data type

Figure 2: Standard Logic Modelling Package

FUNCTION f -state(1v : IN t-wlogic) RETURN t - s ta te ;
-- return s t a t e given log ic value

FUNCTION f-strength(1v : IN t-wlogic) RETURN t-strength;
-- return strength given log ic value

FUNCTION f -quali f ier(1v : IN t-wlogic) RETURN t - s t a t e ;
-- return bus resolution qua l i f i er given log ic value

-- LOGIC VALUE BUILDING FUNCTIONS
FUNCTION f - logic(1vstate : IN t - s ta te ;

lvstrength : IN t-strength) RETURN t-wlogic;
-- return log ic value given state/strength

lvstrength : IN t-strength;
lvqua l i f i er : IN t - s ta te)
RETURN t -wlogic ;
-- return log ic value given state/strength/qualifier

FUNCTION f-logicq(1vstate : IN t - s ta te ;

Figure 3: Utility Functions

f log icq are used to construct logic values given states
and strengths.

A set of basic logic functions is provided in figure 4.
Each of these routines performs a logic function such as
NOT, AND, etc.

Paper 4.3
44

In order to effectively handle timing calculations, the
routine shown in figure 5 is provided. The fassign func-
tion calculates the delay associated with a signal assign-
ment and performs the signal assignment. This routine
provides a basis for handling a wide range of technol-
ogy dependent issues. In particular, an input delay as
well as rising and falling output delays are utilized dur-
ing the calculation. If these values are provided by a
back-annotation facility, accurate processing of the tim-
ing related to individual traces of a layout can be taken
into account.

3.3 Standard Libraries

Standard libraries provide an excellent basis for getting
hardware designers started. They provide good exam-
ples of how models should be developed, they give the
engineer a critical mass for starting use of VHDL, and
they allow leverage of engineering effort by avoiding du-
plicated VHDL modelling efforts.

Important candidates for standard libraries include:

0 ASIC macro libraries

0 standard board level component libraries

In the previous section, a standard logic modelling pack-
age was summarized. In this section, a specific example
which utilizes this package will be shown.

--
FUNCTION f -not(a : IN t - s ta te) RETURN t - s ta te ;

FUNCTION f-and(a,b : IN t - s ta te) RETURN t - s ta te ;

FUNCTION f -or(a,b : IN t - s ta te) RETURN t - s ta te ;

FUNCTION f-nand(a,b : IN t - s ta te) RETURN t - s ta te ;

FUNCTION f-nor(a,b : IN t - s ta te) RETURN t - s ta te ;

FUNCTION f-xor(a,b : IN t - s ta te) RETURN t - s ta te ;

-- return log ic NOT of given value

-- return log ic AND of given values

-- return l o g i c OR of given values

-- return log ic NAND of given values

-- return log ic NOR of given values

-- return log ic XOR of given values

Figure 4: Logic Functions

FUNCTION f -choosedelay(newal : IN t-wlogic;
indel , out-f , out-t : IN TIME) RETURN TIME;

PROCEDURE f-assign(newstate : IN t - s ta te ;
SIGNAL s i g : INOUT l og ic ;
in-delay, out-f , out-t : IN TIME) ;

END standardlogic ;

Figure 5: Delay Functions

Figure 6 shows the VHDL model for a nand gate. The
generic parameters support the passing of a separate d e
lay for each input port, and both rising and falling delays
for the output port.

Figure 7 shows the declarations for a JK flip-flop. Once - ~~

again, each input has a delay associated with it, and each
output has both a rising and a falling delay. Notice also,
that for this model, the clock input has a setup and hold
delay associated with it.

-- BASIC LOGIC OPERATION FUNCTIONS
FUNCTION f - tech(1vstate: IN t - s ta te ; t : IN t-technolog

RETURN t -wlogic ;
-- return a l o g i c value given a s ta te expression.
-- This function i s used i n conjunction with the
-- fo l lov ing log ic operation functions t o return an
-- expression value. For example: --
-- NMOS nand gate:
--
-- TIz and/or:
-- f -tech(f-and(f-or(f -state(a) , f - s ta te (b)) ,
-- f -or(f-state(c) , f -state(d))) , t t l >

f -tech(f -nand(f -state(a) ,f -state(b)) ,nmos)

Figure 8 shows the main body of the flip-flop model,
and outlines how exceptions are handled in this model.
Of particular interest are the VHDL assertions which test
for setup and hold errors. Also of interest is the asyn-
chronous clear process.

Figure 9 shows the remainder of the model. A single
process is used to handle clocked inputs to the model.
Once again, the assign routine is used to perform the
delay calculations and the signal assignments to the out-
put.

ENTITY nand-gate 1s
GENERIC (a-in, b-in, y-f , Y - t : TIME);
PORT (a , b : IN l og ic ;

USE standardlogic.ALL;
END nand-gat e ;

y : OUT l o g i c) ;

Paper 4.3
45

ARCHITECTURE behavioral OF nand-gate IS
BEGIN
-- main process for handling device output
PROCESS (a b)
BEGIN
-- assign output, a input changed
IF NOT a’STABLE THEN
f-assign(f-nand(f-state(a) .f-state(b)),

y , a-in,y-f ,y-t) ;
END IF;

-- assign output, b input changed
IF NOT b’STABLE THEN
f -assign(f -nand(f -state (a) , f -state (b)) ,

y , b-in, y-f ,y-t) ;
END IF;
END PROCESS;

END behavioral ;

Figure 6: Nand Gate Model

ENTITY jkff IS
GENERIC (clr-in, clk-in, q f , q-t, qb-f, qb-t,

PORT (clr, clk, j, k : IN logic;
q, qb : O U T logic);

USE standardlogic.ALL;
END jkff;

clk-setup, clk-hold : TIME);

Figure 7: JKFF Declarations

Both of these models are considerably more complex
than might at first appear necessary. Both models in-
clude the following capabilities:

0 Accurate Handling of Timing - in both cases,
these models are sophisticated enough to handle
back-annotated segment delays which can differ from
one input port to another.

Full Constraint Checking - this includes proper
handling of spike suppression, and hold and setup
checks.

Standardized Value System - both models uti-
lize a standard value system.

0 Standardized Generic Parameters - both mod-
els have employed a standardized approach to nam-
ing generic parameters, and both have all the re-
quired parameters to allow effective automatic back-
annotation of delays from layout.

As a result, these models will be very effective when com-
bined during simulation.

ARCHITECTURE behavioral OF jkff IS
BEGIN
-- assertion to check for setup errors
ASSERT (clk’EVENT) AND

(f-state(c1k) = ’1’) AND
((NOT j’STABLE(clk-setup)) OR
(NOT k’STABLE(c1k-setup)))

REPORT “Setup error”;

-- assertion to check for hold errors
ASSERT (j ’EVENT) AND (NOT clk’STABLE(clk_hold))

ASSERT (k’EVENT) AND (NOT clk’STABLE(c1k-hold))
REPORT “Hold error“;

REPORT “Hold error”;

-- process to handle asynchronous clear
PROCESS (clr)
BEGIN
IF f-state(c1r) = ’0’ THEN
f ,assign(0 ’ , q,clr,in ,q-f ,q-t) ;
f-assign(’l’,qb,clr-in,qb-f ,qb-t);

END IF;
END PROCESS;

Figure 8: JKFF Exception Handling

-- process to handle clocked input
PROCESS (clk)
BEGIN
-- check for a down transition in clock
IF f-state(c1k) = ’0’ THEN

-- watch out for unknown inputs
IF Cf-state(j) = ’ X ’) OR (f-state(k) = ’ X J) THEN
f-assign(’X’,q,clk_in,q-f,q-t);
f -assign(’ X ’ ,qb, clk-in ,qb-f ,qb-t) ;

-- calculate the next output state
ELSE
CASE f-state(j> IS
WHEN ’0’ =>
CASE f,state(k) IS
WHEN ’0’ => -- do nothing
WHEN ’1’ =>
f-assign(’0’ ,q,clk-in,q-f ,set) ;
f -assign(’ 1’ ,qb,clk-in,qb-f ,qb-t) ;

END CASE;
WHEN ’I’ =>
CASE f-state(k) IS
WHEN ’0’ =>

f-assign(’l’,q,clk-in,q-f ,q-t>;
f-assign(’O’,qb,clk-in,qb-f ,qb-t);

WHEN ’I’ =>

Paper 4.3
46

f-assign(f-state(f-not (f-state(q) 11,
q,clk-in,q-f .q-t) ;

f-assign(f_state(f_not(f-state(qb))) I

qb, clk-in, qb-f .qb-t) ;

[COEL87] D.Coelho, D.Hi11, “Multi-Level Simulation
for VLSI Design”, Kluwer Academic Publishers, 1987

[VHDL86] IEEE, “VHDL Language Reference Man-

ual”, Draft Standard 1076/A, December 31, 1986.
END CASE;

END CASE;
END IF ;

END IF;
END PROCESS;

END behavioral;

Figure 9: JKFF Clocked Input

4 Conclusion

Experience with VHDL and other related languages such
as HHDL[COEL83,85] and ADLIB[COEL87] have clearly
demonstrated that without a set of modelling guidelines
and standard packages, a wide variance in coding quality
and compatability will exist from one designer to another.
For this reason, a standard logic modelling package and
associated guidelines are proposed. Although this pack-
age is primarily targeted at logic and functional mod-
elling problems, this area does represent the vast ma-
jority of usages for HDL’s and is the area which most
critically needs standardization.

By leveraging existing knowledge in the development
of behavioral models, a standard VHDL package such as
the one proposed in this paper can be thought of as a
knowledge base from which other designers can learn
and leverage. Further, VHDL users will experience an
increase in productivity by following standard practices
and utilizing a standard package.

5 References

[COEL83] D.Coelho, “HELIX, A Tool for Multi-Level
Simulation of VLSI Systems”, International Semi-custom
IC Conference, November 1983

[COEL85] D.Coelho, “High-Level Design Using HE-
LIX”, ACM Computer-Science Conference, March 1985

[VHDL87] CAD Language Systems, “VHDL Tutorial
for IEEE Standard 1076 VHDL”, Draft, May 1987.

Paper 4.3
47

