The Community for Technology Leaders
2011 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (2011)
Beijing, China
Oct. 10, 2011 to Oct. 12, 2011
ISBN: 978-0-7695-4557-8
pp: 220-225
ABSTRACT
Analyzing and clustering large scale data set is a complex problem. One explored method of solving this problem borrows from nature, imitating the flocking behavior of birds. One limitation of this method of data clustering is its complexity $O(n^2)$. As the number of data and feature dimensions grows, it becomes increasingly difficult to generate results in a reasonable amount of time. In the last few years, the graphics processing unit (GPU) has received attention for its ability to solve highly-parallel and semi-parallel problems much faster than the traditional sequential processor. In this chapter, we have conducted research to exploit this architecture and apply its strengths to the flocking based data clustering problem. Using the CUDA platform from NVIDIA, we developed a Multiple Species Data Flocking implementation to be run on the NVIDIA GPU. Performance gains ranged from $30$ to $60$ times improvement of the GPU over the CPU implementation.
INDEX TERMS
clustering, flocking, GPU, large scale
CITATION

T. E. Potok, J. St. Charles and X. Cui, "The GPU Enhanced Parallel Computing for Large Scale Data Clustering," 2011 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery(CYBERC), Beijing, China, 2011, pp. 220-225.
doi:10.1109/CyberC.2011.44
303 ms
(Ver 3.3 (11022016))