The Community for Technology Leaders
2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2017)
Honolulu, Hawaii, USA
July 21, 2017 to July 26, 2017
ISSN: 2160-7516
ISBN: 978-1-5386-0733-6
pp: 1947-1954
ABSTRACT
This paper presents the proposed solution to the "affect in the wild" challenge, which aims to estimate the affective level, i.e. the valence and arousal values, of every frame in a video. A carefully designed deep convolutional neural network (a variation of residual network) for affective level estimation of facial expressions is first implemented as a baseline. Next we use multiple memory networks to model the temporal relations between the frames. Finally ensemble models are used to combine the predictions from multiple memory networks. Our proposed solution outperforms the baseline model by a factor of 10.62% in terms of mean square error (MSE).
INDEX TERMS
Face, Feature extraction, Predictive models, Neural networks, Estimation, Bidirectional control, Training
CITATION

J. Li et al., "Estimation of Affective Level in the Wild with Multiple Memory Networks," 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, Hawaii, USA, 2017, pp. 1947-1954.
doi:10.1109/CVPRW.2017.244
94 ms
(Ver 3.3 (11022016))