The Community for Technology Leaders
2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2013)
OR, USA
June 23, 2013 to June 28, 2013
ISSN: 2160-7516
ISBN: 978-0-7695-4990-3
pp: 566-571
ABSTRACT
We propose hinge-loss Markov random fields (HLMRFs), a powerful class of continuous-valued graphical models, for high-level computer vision tasks. HL-MRFs are characterized by log-concave density functions, and are able to perform efficient, exact inference. Their templated hinge-loss potential functions naturally encode soft-valued logical rules. Using the declarative modeling language probabilistic soft logic, one can easily define HL-MRFs via familiar constructs from first-order logic. We apply HLMRFs to the task of activity detection, using principles of collective classification. Our model is simple, intuitive and interpretable. We evaluate our model on two datasets and show that it achieves significant lift over the low-level detectors.
INDEX TERMS
CITATION

B. London, S. Khamis, S. H. Bach, B. Huang, L. Getoor and L. Davis, "Collective Activity Detection Using Hinge-loss Markov Random Fields," 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), OR, USA, 2013, pp. 566-571.
doi:10.1109/CVPRW.2013.157
91 ms
(Ver 3.3 (11022016))