The Community for Technology Leaders
2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2013)
OR, USA
June 23, 2013 to June 28, 2013
ISSN: 2160-7516
ISBN: 978-0-7695-4990-3
pp: 301-307
ABSTRACT
Person re-identification is about recognizing people who have passed by a sensor earlier. Previous work is mainly based on RGB data, but in this work we for the first time present a system where we combine RGB, depth, and thermal data for re-identification purposes. First, from each of the three modalities, we obtain some particular features: from RGB data, we model color information from different regions of the body, from depth data, we compute different soft body biometrics, and from thermal data, we extract local structural information. Then, the three information types are combined in a joined classifier. The tri-modal system is evaluated on a new RGB-D-T dataset, showing successful results in re-identification scenarios.
INDEX TERMS
Thermal Features, Multi-modal data, Reidentification, Depth Features
CITATION
Andreas Mogelmose, Chris Bahnsen, Thomas B. Moeslund, Albert Clapes, Sergio Escalera, "Tri-modal Person Re-identification with RGB, Depth and Thermal Features", 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), vol. 00, no. , pp. 301-307, 2013, doi:10.1109/CVPRW.2013.52
91 ms
(Ver 3.3 (11022016))