The Community for Technology Leaders
2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (2008)
Anchorage, AK, USA
June 23, 2008 to June 28, 2008
ISBN: 978-1-4244-2339-2
pp: 1-8
Gang Qian , Department of Electrical Engineering and Arts, Media&Engineering Program, Arizona State University, Tempe, 85287, USA
Bo Peng , Department of Electrical Engineering and Arts, Media&Engineering Program, Arizona State University, Tempe, 85287, USA
ABSTRACT
In this paper, we propose a novel approach to dance pose recognition and body orientation estimation using multilinear analysis. By performing tensor decomposition and projection using silhouette images obtained from wide base-line binocular cameras, low dimensional pose and body orientation coefficient vectors can be extracted. Different from traditional tensor-based recognition methods, the proposed approach takes the pose coefficient vector as features to train a family of support vector machines as pose classifiers. Using the body orientation coefficient vectors, a one-dimensional orientation manifold is learned and further used for the estimation of body orientation. Experiment results obtained using both synthetic and real image data showed the efficacy of the proposed approach, and that our approach outperformed the traditional tensor-based approach in the comparative test.
INDEX TERMS
CITATION
Gang Qian, Bo Peng, "Binocular dance pose recognition and body orientation estimation via multilinear analysis", 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, vol. 00, no. , pp. 1-8, 2008, doi:10.1109/CVPRW.2008.4562970
92 ms
(Ver )