The Community for Technology Leaders
2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (2008)
Anchorage, AK, USA
June 23, 2008 to June 28, 2008
ISBN: 978-1-4244-2339-2
pp: 1-8
Svetlana Lazebnik , Department of Computer Science, University of North Carolina at Chapel Hill, USA
Rahul Raguram , Department of Computer Science, University of North Carolina at Chapel Hill, USA
ABSTRACT
This paper considers the problem of selecting iconic images to summarize general visual categories. We define iconic images as high-quality representatives of a large group of images consistent both in appearance and semantics. To find such groups, we perform joint clustering in the space of global image descriptors and latent topic vectors of tags associated with the images. To select the representative iconic images for the joint clusters, we use a quality ranking learned from a large collection of labeled images. For the purposes of visualization, iconic images are grouped by semantic “theme” and multidimensional scaling is used to compute a 2D layout that reflects the relationships between the themes. Results on four large-scale datasets demonstrate the ability of our approach to discover plausible themes and recurring visual motifs for challenging abstract concepts such as “love” and “beauty.”
INDEX TERMS
CITATION
Svetlana Lazebnik, Rahul Raguram, "Computing iconic summaries of general visual concepts", 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, vol. 00, no. , pp. 1-8, 2008, doi:10.1109/CVPRW.2008.4562959
98 ms
(Ver )