The Community for Technology Leaders
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Honolulu, Hawaii, USA
July 21, 2017 to July 26, 2017
ISSN: 1063-6919
ISBN: 978-1-5386-0457-1
pp: 1647-1655
ABSTRACT
The FlowNet demonstrated that optical flow estimation can be cast as a learning problem. However, the state of the art with regard to the quality of the flow has still been defined by traditional methods. Particularly on small displacements and real-world data, FlowNet cannot compete with variational methods. In this paper, we advance the concept of end-to-end learning of optical flow and make it work really well. The large improvements in quality and speed are caused by three major contributions: first, we focus on the training data and show that the schedule of presenting data during training is very important. Second, we develop a stacked architecture that includes warping of the second image with intermediate optical flow. Third, we elaborate on small displacements by introducing a subnetwork specializing on small motions. FlowNet 2.0 is only marginally slower than the original FlowNet but decreases the estimation error by more than 50%. It performs on par with state-of-the-art methods, while running at interactive frame rates. Moreover, we present faster variants that allow optical flow computation at up to 140fps with accuracy matching the original FlowNet.
INDEX TERMS
image sequences, learning (artificial intelligence), motion estimation
CITATION

E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy and T. Brox, "FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, USA, 2017, pp. 1647-1655.
doi:10.1109/CVPR.2017.179
182 ms
(Ver 3.3 (11022016))