The Community for Technology Leaders
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Las Vegas, NV, United States
June 27, 2016 to June 30, 2016
ISSN: 1063-6919
ISBN: 978-1-4673-8851-1
pp: 4706-4714
ABSTRACT
We present a global optimization approach to optical flow estimation. The approach optimizes a classical optical flow objective over the full space of mappings between discrete grids. No descriptor matching is used. The highly regular structure of the space of mappings enables optimizations that reduce the computational complexity of the algorithm's inner loop from quadratic to linear and support efficient matching of tens of thousands of nodes to tens of thousands of displacements. We show that one-shot global optimization of a classical Horn-Schunck-type objective over regular grids at a single resolution is sufficient to initialize continuous interpolation and achieve state-of-the-art performance on challenging modern benchmarks.
INDEX TERMS
Optimization, Optical imaging, Estimation, Computer vision, Aerospace electronics, Optical buffering, Benchmark testing
CITATION

Q. Chen and V. Koltun, "Full Flow: Optical Flow Estimation By Global Optimization over Regular Grids," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, United States, 2016, pp. 4706-4714.
doi:10.1109/CVPR.2016.509
185 ms
(Ver 3.3 (11022016))