The Community for Technology Leaders
2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)
Columbus, OH, USA
June 23, 2014 to June 28, 2014
ISSN: 1063-6919
ISBN: 978-1-4799-5118-5
pp: 3734-3741
ABSTRACT
Scene recognition is a basic task towards image understanding. Spatial Pyramid Matching (SPM) has been shown to be an efficient solution for spatial context modeling. In this paper, we introduce an alternative approach, Orientational Pyramid Matching (OPM), for orientational context modeling. Our approach is motivated by the observation that the 3D orientations of objects are a crucial factor to discriminate indoor scenes. The novelty lies in that OPM uses the 3D orientations to form the pyramid and produce the pooling regions, which is unlike SPM that uses the spatial positions to form the pyramid. Experimental results on challenging scene classification tasks show that OPM achieves the performance comparable with SPM and that OPM and SPM make complementary contributions so that their combination gives the state-of-the-art performance.
INDEX TERMS
Three-dimensional displays, Vectors, Accuracy, Encoding, Histograms, Feature extraction, Context modeling
CITATION

L. Xie, J. Wang, B. Guo, B. Zhang and Q. Tian, "Orientational Pyramid Matching for Recognizing Indoor Scenes," 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 2014, pp. 3734-3741.
doi:10.1109/CVPR.2014.477
203 ms
(Ver 3.3 (11022016))