The Community for Technology Leaders
2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013)
Portland, OR, USA
June 23, 2013 to June 28, 2013
ISSN: 1063-6919
ISBN: 978-0-7695-4989-7
pp: 2858-2865
In visual recognition tasks, the design of low level image feature representation is fundamental. The advent of local patch features from pixel attributes such as SIFT and LBP, has precipitated dramatic progresses. Recently, a kernel view of these features, called kernel descriptors (KDES), generalizes the feature design in an unsupervised fashion and yields impressive results. In this paper, we present a supervised framework to embed the image level label information into the design of patch level kernel descriptors, which we call supervised kernel descriptors (SKDES). Specifically, we adopt the broadly applied bag-of-words (BOW) image classification pipeline and a large margin criterion to learn the low-level patch representation, which makes the patch features much more compact and achieve better discriminative ability than KDES. With this method, we achieve competitive results over several public datasets comparing with state-of-the-art methods.

P. Wang, J. Wang, G. Zeng, W. Xu, H. Zha and S. Li, "Supervised Kernel Descriptors for Visual Recognition," 2013 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Portland, OR, USA USA, 2013, pp. 2858-2865.
94 ms
(Ver 3.3 (11022016))