The Community for Technology Leaders
2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013)
Portland, OR, USA
June 23, 2013 to June 28, 2013
ISSN: 1063-6919
ISBN: 978-0-7695-4989-7
pp: 2658-2665
Recognizing human activities in partially observed videos is a challenging problem and has many practical applications. When the unobserved subsequence is at the end of the video, the problem is reduced to activity prediction from unfinished activity streaming, which has been studied by many researchers. However, in the general case, an unobserved subsequence may occur at any time by yielding a temporal gap in the video. In this paper, we propose a new method that can recognize human activities from partially observed videos in the general case. Specifically, we formulate the problem into a probabilistic framework: 1) dividing each activity into multiple ordered temporal segments, 2) using spatiotemporal features of the training video samples in each segment as bases and applying sparse coding (SC) to derive the activity likelihood of the test video sample at each segment, and 3) finally combining the likelihood at each segment to achieve a global posterior for the activities. We further extend the proposed method to include more bases that correspond to a mixture of segments with different temporal lengths (MSSC), which can better represent the activities with large intra-class variations. We evaluate the proposed methods (SC and MSSC) on various real videos. We also evaluate the proposed methods on two special cases: 1) activity prediction where the unobserved subsequence is at the end of the video, and 2) human activity recognition on fully observed videos. Experimental results show that the proposed methods outperform existing state-of-the-art comparison methods.

Y. Cao et al., "Recognize Human Activities from Partially Observed Videos," 2013 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Portland, OR, USA USA, 2013, pp. 2658-2665.
94 ms
(Ver 3.3 (11022016))