CVPR 2011 (2011)

Providence, RI

June 20, 2011 to June 25, 2011

ISBN: 978-1-4577-0394-2

pp: 2417-2424

F. Escolano , Univ. of Alicante, Alicante, Spain

E. Hancock , Univ. of York, York, UK

M. Lozano , Univ. of Alicante, Alicante, Spain

ABSTRACT

In this paper we cast the problem of graph matching as one of non-rigid manifold alignment. The low dimensional manifolds are from the commute time embedding and are matched though coherent point drift. Although there have been a number of attempts to realise graph matching in this way, in this paper we propose a novel information-theoretic measure of alignment, the so-called symmetrized normalized-entropy-square variation. We successfully test this dissimilarity measure between manifolds on a a challenging database. The measure is estimated by means of the bypass Leonenko entropy functional. In addition we prove that the proposed measure induces a positive definite kernel between the probability density functions associated with the manifolds and hence between graphs after deformation. In our experiments we find that the optimal embedding is associated to the commute time distance and we also find that our approach, which is purely topological, outperforms several state-of-the-art graph-based algorithms for point matching.

INDEX TERMS

graph based algorithms, graph matching, entropic manifold alignment, nonrigid manifold alignment, low dimensional manifold, coherent point drift, information theoretic measure, symmetrized normalized entropy square variation, Leonenko entropy functional, positive definite kernel, probability density functions

CITATION

E. Hancock, F. Escolano and M. Lozano, "Graph matching through entropic manifold alignment,"

*CVPR 2011(CVPR)*, Providence, RI, 2011, pp. 2417-2424.

doi:10.1109/CVPR.2011.5995583

CITATIONS