The Community for Technology Leaders
2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2010)
San Francisco, CA, USA
June 13, 2010 to June 18, 2010
ISBN: 978-1-4244-6984-0
pp: 1903-1910
Richard C. Wilson , Department of Computer Science, University of York, UK
Edwin R. Hancock , Department of Computer Science, University of York, UK
Elzbieta Pekalska , School of Computer Science, University of Manchester, United Kingdom
Robert P. W. Duin , Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Netherlands
ABSTRACT
Many computer vision and pattern recognition problems may be posed by defining a way of measuring dissimilarities between patterns. For many types of data, these dissimilarities are not Euclidean, and may not be metric. In this paper, we provide a means of embedding such data. We aim to embed the data on a hypersphere whose radius of curvature is determined by the dissimilarity data. The hypersphere can be either of positive curvature (elliptic) or of negative curvature (hyperbolic). We give an efficient method for solving the elliptic and hyperbolic embedding problems on symmetric dissimilarity data. This method gives the radius of curvature and a method for approximating the objects as points on a hyperspherical manifold. We apply our method to a variety of data including shape-similarities, graph-similarity and gesture-similarity data. In each case the embedding maintains the local structure of the data while placing the points in a metric space.
INDEX TERMS
CITATION

R. C. Wilson, E. Pekalska, R. P. Duin and E. R. Hancock, "Spherical embeddings for non-Euclidean dissimilarities," 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR), San Francisco, CA, USA, 2010, pp. 1903-1910.
doi:10.1109/CVPR.2010.5539863
98 ms
(Ver 3.3 (11022016))