The Community for Technology Leaders
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) (2005)
San Diego, California
June 20, 2005 to June 26, 2005
ISSN: 1063-6919
ISBN: 0-7695-2372-2
pp: 830-837
Shuicheng Yan , Chinese University of Hong Kong
Dong Xu , University of Science and Technology of China
Benyu Zhang , Microsoft Research Asia
Hong-Jiang Zhang , Microsoft Research Asia
In the last decades, a large family of algorithms —. supervised or unsupervised; stemming from statistic or geometry theory..have been proposed to provide different solutions to the problem of dimensionality reduction. In this paper, beyond the different motivations of these algorithms, we propose a general framework, graph embedding along with its linearization and kernelization, which in theory reveals the underlying objective shared by most previous algorithms. It presents a unified perspective to understand these algorithms; that is, each algorithm can be considered as the direct graph embedding or its linear/kernel extension of some specific graph characterizing certain statistic or geometry property of a data set. Furthermore, this framework is a general platform to develop new algorithm for dimensionality reduction. To this end, we propose a new supervised algorithm, Marginal Fisher Analysis (MFA), for dimensionality reduction by designing two graphs that characterize the intra-class compactness and inter-class separability, respectively. MFA measures the intra- class compactness with the distance between each data point and its neighboring points of the same class, and measures the inter-class separability with the class margins; thus it overcomes the limitations of traditional Linear Discriminant Analysis algorithm in terms of data distribution assumptions and available projection directions. The toy problem on artificial data and the real face recognition experiments both show the superiority of our proposed MFA in comparison to LDA.

S. Yan, H. Zhang, B. Zhang and D. Xu, "Graph Embedding: A General Framework for Dimensionality Reduction," 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)(CVPR), San Diego, CA, USA USA, 2005, pp. 830-837.
96 ms
(Ver 3.3 (11022016))