The Community for Technology Leaders
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) (2005)
San Diego, California
June 20, 2005 to June 26, 2005
ISSN: 1063-6919
ISBN: 0-7695-2372-2
pp: 645-650
Shuicheng Yan , Chinese University of Hong Kong
Dong Xu , University of Science and Technology of China
Lei Zhang , Microsoft Research Asia
Benyu Zhang , Microsoft Research Asia
HongJiang Zhang , Microsoft Research Asia
ABSTRACT
It was prescriptive that an image matrix was transformed into a vector before the kernel-based subspace learning. In this paper, we take the Kernel Discriminant Analysis (KDA) algorithm as an example to perform kernel analysis on 2D image matrices directly. First, each image matrix is decomposed as the product of two orthogonal matrices and a diagonal one by using Singular Value Decomposition; then an image matrix is expanded to be of higher or even infinite dimensions by applying the kernel trick on the column vectors of the two orthogonal matrices; finally, two coupled discriminative kernel subspaces are iteratively learned for dimensionality reduction by optimizing the Fisher criterion measured by Frobenius norm. The derived algorithm, called Coupled Kernel Discriminant Analysis (CKDA), effectively utilizes the underlying spatial structure of objects and the discriminating information is encoded in two coupled kernel subspaces respectively. The experiments on real face databases compared with KDA and Fisherface validate the effectiveness of CKDA.
INDEX TERMS
null
CITATION

B. Zhang, S. Yan, H. Zhang, D. Xu and L. Zhang, "Coupled Kernel-Based Subspace Learning," 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)(CVPR), San Diego, CA, USA USA, 2005, pp. 645-650.
doi:10.1109/CVPR.2005.114
84 ms
(Ver 3.3 (11022016))