The Community for Technology Leaders
2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings. (2003)
Madison, Wisconsin
June 18, 2003 to June 20, 2003
ISSN: 1063-6919
ISBN: 0-7695-1900-8
pp: 781
Ahmed Elgammal , Rutgers University
Ramani Duraiswami , University of Maryland
Larry S. Davis , University of Maryland
ABSTRACT
In this paper we present a probabilistic framework for tracking regions based on their appearance. We exploit the feature-spatial distribution of a region representing an object as a probabilistic constraint to track that region over time. The tracking is achieved by maximizing a similarity-based objective function over transformation space given a nonparametric representation of the joint feature-spatial distribution. Such a representation imposes a probabilistic constraint on the region feature distribution coupled with the region structure which yields an appearance tracker that is robust to small local deformations and partial occlusion. We present the approach for the general form of joint feature-spatial distributions and apply it to tracking with different types of image features including row intensity, color and image gradient.
INDEX TERMS
null
CITATION

A. Elgammal, R. Duraiswami and L. S. Davis, "Probabilistic Tracking in Joint Feature-Spatial Spaces," 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings.(CVPR), Madison, Wisconsin, 2003, pp. 781.
doi:10.1109/CVPR.2003.1211432
96 ms
(Ver 3.3 (11022016))