The Community for Technology Leaders
Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001 (2001)
Kauai, Hawaii
Dec. 8, 2001 to Dec. 14, 2001
ISSN: 1063-6919
ISBN: 0-7695-1272-0
pp: 563
Ahmed Elgammal , The University of Maryland
Ramani Duraiswami , The University of Maryland
Larry S. Davis , The University of Maryland
ABSTRACT
Modeling the color distribution of a homogeneous region is used extensively for object tracking and recognition applications. The color distribution of an object represents a feature that is robust to partial occlusion, scaling and object deformation. A variety of parametric and non-parametric statistical techniques have been used to model color distributions. In this paper we present a non-parametric color modeling approach based on kernel density estimation as well as a computational framework for efficient density estimation. Theoretically, our approach is general since ker-nel density estimators can converge to any density shape with sufficient samples. Therefore, this approach is suitable to model the color distribution of regions with patterns and mixture of colors. Since kernel density estimation techniques are computationally expensive, the paper introduces the use of the Fast Gauss Transform for efficient computation of the color densities. We show that this approach can be used successfully for color-based segmentation of body parts as well as segmentation of multiple people under occlusion.
INDEX TERMS
null
CITATION

A. Elgammal, R. Duraiswami and L. S. Davis, "Efficient Non-Parametric Adaptive Color Modeling Using Fast Gauss Transform," Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001(CVPR), Kauai, Hawaii, 2001, pp. 563.
doi:10.1109/CVPR.2001.991012
100 ms
(Ver 3.3 (11022016))