The Community for Technology Leaders
2013 IEEE Conference on Computer Vision and Pattern Recognition (2001)
Kauai, Hawaii
Dec. 8, 2001 to Dec. 14, 2001
ISSN: 1063-6919
ISBN: 0-7695-1272-0
pp: 1010
Kristen Grauman , MIT AI Lab
Gary R. Bradski , Intel Corporation
Margrit Betke , Boston University
James Gips , Boston College
A method for a r eal-time vision system that automatically detects a user's eye blinks and accurately measures their durations is introduced. The system is intended to provide an alternate input modality to allow people with severe disabilities to access a computer. Voluntary long blinks trigger mouse clicks, while involuntary short blinks are ignored. The system enables communication using "blink patterns:" sequences of long and short blinks which are interpreted as semiotic messages. The location of the eyes is determined automatically through the motion of the user's initial blinks. Subsequently, the eye is tracked by correlation across time, and appearance changes are automatically analyzed in order to classify the eye as either open or closed at each frame. No manual initialization, special lighting, or prior face detection is r equired. The system has been tested with interactive games and a spelling program. Results demonstrate overall detection accuracy of 95.6% and an average rate of 28 frames per second.
Kristen Grauman, Gary R. Bradski, Margrit Betke, James Gips, "Communication via Eye Blinks - Detection and Duration Analysis in Real Time", 2013 IEEE Conference on Computer Vision and Pattern Recognition, vol. 01, no. , pp. 1010, 2001, doi:10.1109/CVPR.2001.990641
138 ms
(Ver 3.3 (11022016))