The Community for Technology Leaders
Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149) (1999)
Fort Collins, Colorado
June 23, 1999 to June 25, 1999
ISSN: 1063-6919
ISBN: 0-7695-0149-4
pp: 2246
Chris Stauffer , Massachusetts Institute of Technology
W.E.L. Grimson , Massachusetts Institute of Technology
ABSTRACT
A common method for real-time segmentation of moving regions in image sequences involves "background subtraction," or thresholding the error between an estimate of the image without moving objects and the current image. The numerous approaches to this problem differ in the type of background model used and the procedure used to update the model. This paper discusses modeling each pixel as a mixture of Gaussians and using an on-line approximation to update the model. The Gaussian distributions of the adaptive mixture model are then evaluated to determine which are most likely to result from a background process. Each pixel is classified based on whether the Gaussian distribution which represents it most effectively is considered part of the background model.This results in a stable, real-time outdoor tracker which reliably deals with lighting changes, repetitive motions from clutter, and long-term scene changes. This system has been run almost continuously for 16 months, 24 hours a day, through rain and snow.
INDEX TERMS
tracking, adaptive background, real-time
CITATION

C. Stauffer and W. Grimson, "Adaptive Background Mixture Models for Real-Time Tracking," Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)(CVPR), Fort Collins, Colorado, 1999, pp. 2246.
doi:10.1109/CVPR.1999.784637
87 ms
(Ver 3.3 (11022016))