The Community for Technology Leaders
Computer Science and Information Engineering, World Congress on (2009)
Los Angeles, California USA
Mar. 31, 2009 to Apr. 2, 2009
ISBN: 978-0-7695-3507-4
pp: 274-278
ABSTRACT
It is well known that discriminative feature and effective robust processing are two key techniques. This paper presents a new strategy which combining speech enhancement and discriminative feature in order to overcome the acoustics mismatch between training and testing data in the noise environment. On the one hand, a comparison results in two noise environments indicate that the recognition rates based on DFCC are averagely higher 6.11% (White noise) and 8%(Factory noise) respectively than MFCC, which confirmed that the effectiveness of discriminative and robustness of DFCC. On the other hand, when combining speech enhancement and discriminative feature, the improvement based on SMFCC is limited, only 0.93%, 1.87%, while the performance has been improved by 2.54%, 2.31% based on SDFCC.
INDEX TERMS
CITATION
Tang Zhenmin, Zhang Yan, Li Yanping, "Combining Speech Enhancement and Discriminative Feature Extraction for Robust Speaker Recognition", Computer Science and Information Engineering, World Congress on, vol. 05, no. , pp. 274-278, 2009, doi:10.1109/CSIE.2009.61
89 ms
(Ver 3.3 (11022016))