The Community for Technology Leaders
Computer Science and Information Engineering, World Congress on (2009)
Los Angeles, California USA
Mar. 31, 2009 to Apr. 2, 2009
ISBN: 978-0-7695-3507-4
pp: 651-655
K-means algorithm is one of the most famous unsupervised clustering algorithms. Many theoretical improvements for the performance of original algorithms have been put forward, while almost all of them are based on Single Instruction Single Data(SISD) architecture processors (CPUs), which partly ignored the inherent paralleled characteristic of the algorithms. In this paper, a novel Single Instruction Multiple Data (SIMD) architecture processors (GPUs)based k-means algorithm is proposed. In this algorithm, in order to accelerate compute-intensive portions of traditional k-means, both data objects assignment and k centroids recalculation are offloaded to the GPU in parallel. We have implemented this GPU-based k-means on the newest generation GPU with Compute Unified Device Architecture(CUDA). The numerical experiments demonstrated that the speed of GPU-based k-means could reach as high as 40 times of the CPU-based k-means.
K-means, GPU, SIMD, CUDA
Bai Hong-tao, Li Zhan-shan, Ouyang Dan-tong, He Li-li, Li He, "K-Means on Commodity GPUs with CUDA", Computer Science and Information Engineering, World Congress on, vol. 03, no. , pp. 651-655, 2009, doi:10.1109/CSIE.2009.491
88 ms
(Ver 3.3 (11022016))