The Community for Technology Leaders
Computer Science and Information Engineering, World Congress on (2009)
Los Angeles, California USA
Mar. 31, 2009 to Apr. 2, 2009
ISBN: 978-0-7695-3507-4
pp: 651-655
A series of hydrocarbons in FCC gasoline have been used to develop quantitative structure-retention relationships (QSRR) for their gas chromatographic retention index (RI) by using molecular descriptors which were calculated by Dragon software. QSRR models were built by adopting Multiple Linear Regression (MLR) and Artificial Neural Network (ANN). However, the results showed more or less the same quality with the predictive correlation coefficient R of 0.9952 and 0.9953 for MLR and ANN respectively. The obtained results told us that linear method is good enough to model the gas chromatographic retention index at least to the current dataset.
quantitative structure-retention relationships (QSRR), retention index (RI), Multiple Linear Regression (MLR), Artificial Neural Network (ANN)
Lijuan Song, Ting Sun, Ling Ding, Zhaolin Sun, Xiaotong Zhang, "Prediction of Gas Chromatographic Retention Index for Hydrocarbons in FCC Gasoline", Computer Science and Information Engineering, World Congress on, vol. 01, no. , pp. 651-655, 2009, doi:10.1109/CSIE.2009.302
86 ms
(Ver )