The Community for Technology Leaders
2013 IEEE 16th International Conference on Computational Science and Engineering (2009)
Vancouver, Canada
Aug. 29, 2009 to Aug. 31, 2009
ISBN: 978-0-7695-3823-5
pp: 92-99
ABSTRACT
Many evidence-based trust models require the adjustment of parameters such as aging- or exploration-factors. What the literature often does not address is the systematic choice of these parameters. In our work, we propose a generic procedure for finding trust model parameters that maximize the expected utility to the trust model user. The procedure is based on gametheoretic considerations and uses a genetic algorithm to cope with the vast number of possible attack strategies. To demonstrate the feasibility of the approach, we apply our procedure to a concrete trust model and optimize the parameters of this model.
INDEX TERMS
Trust, Parameterization, Genetic Algorithm, Game Theory, Benchmarking
CITATION
Thomas Engel, Eugen Staab, "Tuning Evidence-Based Trust Models", 2013 IEEE 16th International Conference on Computational Science and Engineering, vol. 03, no. , pp. 92-99, 2009, doi:10.1109/CSE.2009.209
90 ms
(Ver 3.3 (11022016))